MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AL Memo No. 628 | June, 1981

Chaosnet

David A. Moon

Abstract

Chaosnet is a local network, that is, a system for communication among a group of
computers ‘located within about 1000 meters of each other. Originally developed by the Artificial
Intelligence Laboratory as the internal communications medium of the Lisp Machine system, it
has since come to be used to link a varicty of machines around MIT and clsewhere.

This memo describes both the hardware and the software protocols. It is intended to be the
definitive documentation for Chaosnet.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory’s artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Decfense under Office of
Naval Research contract N00014-80-C-0505.

Chaosnet : A . i _ Table of Contents

Table of Contents

Lo Introduction 0 o e e e e e e e 1
2. Hardware Protocol oo e e e e e e e e e 3
0 B 0 Ve 1 3
2. PaCKelS. . . . e e e e e e e e e e e e e e e 3
23 The Transceiver . . . v v v v e it e e e e e e e e e e e e e e e e 4
24 Thelnterface. . . v o v v i e e e e e e e e e e e e e e e 4
2.5 Hardware Protocols. . . v . v v oo v o v e e e e PR 5
2.6 EtherContention. . . . v v v v v v e it e e e et e e e e e e e e e e 6
3. Software Protocol-—World View. . . . o o v v v v e e e e e e e e e e e e e e e 9
3.1 Connections e e e e e e e e e e e e e e e 9
3.2 Contact Names... e e e e e e e e e e e e e e e e e e 9
33 Addressesand Indices L L o e e e e e e e e e e e e e 10
34 Packet NUMDCIS & . . o v e i it s s e s e e e e e e e e e e e e e e e e e 11
3 PacKe S, L . i e 12
36 DataFormats. v i o e e e e e e e e e e e e e e 13
3 ROUNE s e 14
38 FlowandErrorControl. e e e e e e e e e e e e 17
4. SoftwarcProtocol—Details L e e e e e e e e e e 20
4.1 Conncction Establishment 0 v v i v e e s e e e e e e e e e e e e e 20
L] v+ - 23
L T D | - 24
44 End-of-Data e 24
45 Broadcast., . v . v v i e 25
4.6 Low-level O e e e e e e e e 27
4,7 ConnectionStates v oo . v ... e e e e e e e e e e 27
5. Higher-Level Protocols e e e e e e e e e e e e 29
T8 S 72 1 29
T) < 30
5.3 TelnetandSupdup e e e e e e e e e 31
54 il ACCESS . & v vt i e 31
S Mail o L e 31
56 Send . . L L e e e e e e e e e e e e e e e e e 32
ST NAME & . o o e s s e e e e e e e e e e e e e e e e PR 32
58 Time. . . e e e e e e e e e e e e e e e e e e 32
SO Arpanct Gateway. h v e e e i e e e e e e e e e e e e Ve 33
510 HostTable e e e e e e e e e e e e e e e 33
0 1 o . 34
6. Using Foreign Protocolsin Chaosnet e e e e e e 35
7. Hardware Programming Documentation. et e e e e e e e e e e e e 38
8. The I'TS Implementation OO
8.1 SystemCalls . . v . . . e e e e e e e e 40

31-MAR-82

Chaosnet ii Table of Contents

8.1L1 Opening I/O Channels. v v v it e e e e e e e e e e e e e e e e e 40
8.12 Inputand OUtput v v i i e e e e e e e e e e e e e e e e e e e 40
T T 33§ 10 o - 41
8.1.4 Misccllancous Operations v i i e e e e e e e e e e e 42
8.2 UtilityPrograms v v it e e e e e e e e e e e e 43
8.3 SCIVEI Programs . . . o v v v v e 45
8.4 Subroutine Packages L e e e e e e e e e e e e e e e e 45
9. The TOPS-20/TENEX Implementation. o v v v v v v i v vt e et e e e e e oo e e 46
9.1 Opecning Connections. e e e e e e e e e e e e e e e e .. .46
9.2 Stream Inputand Output v o L vt e 47
9.3 Packet Inputand Output T e 47
9.4 SpecialOperationso oL e e e e e e e e e e e e e e 47
9.5 Utility Programs . . v v v v vt v st e 49
9.6 SCerver Programs . . v v v v v it e 49
10. The Lisp Machine Implementation. . . v . v v v v v vt v vt o v e e e e e e 50
10.1 Opening and Closing Connections. v v v v e v v v e v e e e e e e e e e e 50
1081 User-Side 0 oo i e e e e e e e e e 50
10.1.2 Server-Side. . . . o 0 o o e e e e 51
10.2 Connection States . . v v v v v v e 51
10.3 Stream Input and OUtPUL v v v v i e e e e e e e e e e e e e e 52
10.4 PacketInputand OQutput, v v v v i i e e e e e e e e e e e e e e 53
105 Connection Interrupts. .« . v v v v v v v i e e e e e e e e e e e P 1
10.6 Information and Control, . . . + v v v v v v i e e e e e e e e e e 55
11. The VAX/VMS Implementation., . . . e e e e e e e e 56
111 Opening and CIOSINE .« + v v v v v v v v e e e e e e e e e e e .50
11.2 Strecam Inputand QUEPUL o v v v v vt e e e e e e e e e e 57
11.3 Packet Inputand Output. f e e e e e e e e e e e e e e e e e 57
114 Checking the SEAte. . o v v v v v vt o e e e e e e e e e e e 58
12. The Unix Implementation v v it v v v v o v as e e 60
12.1 HeaderFiles 0 0 v vt i e s s e e e e e e e e e e e e 60
12.2 Special Files for Creating Connections. v vt v vt vt e e e e e 60
12.3 StreamMode Connections. v v v v v h s e e e e e e e e e e e e e e e e 61
12.4 Record Mode Connections. . v v v v v v v v v v 0 v o b b e e e e e e e e e e e 62
125 TTY Mode ConnectionS. « « v v v v v v v v e v et e e e e e e e e e e e e e 62
12.6 Foreign ProtocolMode e e e e e e e e e e e e e e e e 63
12.7 10CTL System Call Commands e e EP PR < X |
12.8 Signals o v s s e s 64
12.9 Software Installation. e e e e e 64
References. . . . v v v v v i e 66

31-MAR-82 -

Chaosnet 1 Introduction

1. Introduction

Chaosnet is a local network, that is, a system for communication among a group of
computers located within one or two kilometers of each other. The nam¢ Chaosnet refers to the
lack of any centralized control clemr.ent in this- network. '

Chaosnet was originally developed in 1975 by the Artificial Intelligence Laboratory of the
Massachusctts Institute of Technolegy as the internal communications medium of the Lisp Machine
system [CHINUAL, AIM444]. It has since come to be used to link a variety of machines around
the Institute. Chaosnets also cxist at several other universitiés and rescarch laboratorics.

The Lisp Machine system is a multi-processor in which ecach active user is assigned a
"personal” computer consisting of a medium-scale processor, a suitable amount of memory, and a
swapping disk. Files arc stored in a central file-system accessed through - Chaosnet. This shared
file-system retains the traditional advantages of a time-sharing system, namely inter-user
communication, shared programs, and centralized backup and maintenance. At thce same time, by
giving cach active user his own processor, the Lisp Machine system is much. more capable than a
time-sharing system at cxccuting Lisp programs scveral million words in size cfficiently and with
rapid interactive responsc. Because Chaosnet is taking the place of the file disk in a conventional
system, it must be fast (both in response and in throughput), it must be reliable (this is the
rcason why- there is no centralized control), and it must allow connection of several dozen
machines. However, it does not neced to operate over long distances. Chaosnet is used to access
other shared resources in addition to the file system; these -include printers, tape drives, and one-
of-a-kind specialized processors and 170 devices.

The system goals for Chaosnet were primarily “simplicity and high performance. The
performance is achieved by starting with a very high speed transmission medium and operating it
in a simple, low-overhcad fashion, rather than by using unusually clever algorithms. Of course
onc has to be carcful to avoid algorithms which arc so simple that they don’t work or waste so
much of the transmission medium that performance is impacted. Simplicity was important not
only to improve performance, but because Chaosnct connccts a diverse -set of machines, and
hence had to have several implementations all of which require maintenance in proportion to their
complexity.

Simplicity: of design also aids greatly in maintenance and management of the network itself,
which has proven to be a non-trivial task in a nctwork involving a variety of machines and used
by a varicty of groups, cven within the single institution of MIT. It is important to be able to
isolate- an apparent failure of the whole network to the cable or to a particular host’s hardware or
software as rapidly as possible.

The dcsign of Chaosnet was greatly simplificd by ignoring problems irrelevant to local
networks. Chaosnct contains no special provisions for things such as low-speed links, noisy (very
high error-rate) links, multiple paths, and long-distance links with significant transit time. This
means- that Chaosnet is not particularly suitable for use across thc continent or in satellite
applications., Chaosnet also makes no attempt to provide unnccessary features such as multiple
levels of service or sccure communication (other than by end-to-end encryption).

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet , 2 Introduction

Chaosnet was largely inspircd by the pioncering work on local networks at Xerox PARC
[ETHERNET].

Chaosnet consists of two parts—the hardware and the softwarc—-which, while logically
scparable, were designed for cach other. The bhardwarc provides a carrier-sense multiple-access
structure very similar to the PARC Ethernet. Network nodes contend for access to a cable, or
ether, over which they may transmit packets addressed to other network nodes. The software
defines higher-level protocols in terms of packets. These protocols can be (and are) uscd with
media’ other than the Chaosnet cable, and with multiple interconnected cables. The software
contains ideas borrowed from Ethernet [ETHERNET], TCP [I'CP], and Arpanct, with some
original ideas and modifications.

ML:LSBDOC:AMBIR 116 ' . ‘ . 31-MAR-82

Chaosnet 3 Hardware Protocol

2. Hardware Protocol

2.1 The Ether

The transmission medium of Chaosnet is called the ether. Physically it is a coaxial cable, of
the semi-rigid 1/2 inch low-loss type used for cable TV, with 75-ohm tcrmination at both cnds.
At cach network node a cable transceiver is attached to the cable. A 10-1acter flat cable connccts
the transceiver to an inferface which is attached to a computer’s /0 bus. A nctwork node
consists of this transcciver and interface and a computer which cxecutes a certain picce of software
called the Network Control Program (NCP), which manages and controls Chaosnet, in addition to
whatever application softwarc justifics its existence in the first place.

One nctwork node at a time may secize the cther and transmit a packet, which arrives at all
other nodes; cach node decides in hardware whether to ignore the packet or to receive it. A
single cther must be a lincar cable; it may not contain branches nor stubs, and the ends may not
be joined into a circle. The maximum length of an cther cable is about 1 kilometer. This is
determined by dispersion and by DC attenuation. The maximum number of nodes on a single
cther is probably a few dozen. This is determined by degradation of the clectrical propertics of
the ‘cable by the conncctors used to attach the transceivers.

“The maximum length of an . ether could be increased by using repeaters (bidirectional digital
amplifiers joining two picces of cable). In practice this is not donc. Instcad, the protocol
provides for multiple cthers, joined together by nodes called bridges which relay packets from one
cther to another. A bridge is typically a pdpll computer with two or more nctwork interfaces
attached to it. A bridge node usually performs other tasks as well, such as interfacing terminals.
Bridges attach other nctwork media as well as cthers; some computers conncct to the nctwork
through their manufacturcr’s high speed computer-to-computer interface to a ncarby bridge, rather
than being interfaced dircetly to an ecther. Asynchronous lines have also been used as Chaosnet
media.

The form of information on the ecther, the transceiver and interface hardware, and the
protocols which control who may scize the cther are described in the following sections.

2.2 Packets

The basic unit of transmission is called a packet. This is a sequence of up to 4032 data bits,
plus 48 bits of header information used by the hardware. Packets’ bits arc normally grouped into
16-bit words. The division of a transmitted bit stream into packets provides a conveniently-sized
unit for resource allocation and error control. The job of the hardware is to dcliver a packet
from one node to another, - Software protocols define the meaning of the data bits in a packet,
manage the hardware, compensate for imperfections of the hardware, and provide more uscful
services than simple transmission of packets from one computer to another.

The hardware header consists of three 16-bit words, called destination, source, and check.
The source identifies the node which transmitted this packet onto this ether. This is not
necessarily the original source of the mcssage, since it may have originated on a different ether.

MI:LSBDOC;AMBER 116 | 31-MAR-82

Chaosnet 4 The Transceiver

The destination -identifics the node which is intended to reccive this packet from this ether. This
is not nccessarily the final destination of the message; it may be a bridge which should relay the
packet to another cther, whence it will eventually reach its final destination. The check word is a
cyclic redundancy checksum, gencrated” and checked by hardware, which detects errors in
transmission through the cther, cntirely-spurious packets created by noise on the cable, and
memory crrors in the transmitting and receiving packet buffers.

The software protocol is also based on packets, taking 128 of the data bits as a software
header. This is described in section 3.5, page 12.

2.3 The Transceiver

Everyone who connects to the cther docs so through a transcciver, which is a small box
which mounts dircctly on the cable via a UHF connector and a T-joint. All nodes use identical
transceivers (the interface varics depending on what computer it is designed to interface to). The
transcciver containg the analog portion of the interface logic, provides ground isolation between
the' ether cable and the computer, and contains some protective circuitry designed to prevent a
malfunctioning program- or interface from continuously jamming the ether. (If it were to be
redesigned, it- ought to contain cven more protective circuitry, since there arc some possible
interface failures that can get past the protection and render the cther unusable.)

The transceiver receives a differential digital signal from the computer interface and impresses
it onto the cable as a level of about 8 volts for a 1, or 0 volts (open circuit) for a 0, through a
very fast VMOS power FET. When the cable is idle it is held at 0 volts by the terminations.
This simple-minded unipolar scheme is adequate for the medium cable lengths and transmission
speeds we are using. The transcciver monitors -the cable by comparing it against a rcference
voltage, and returns a differential signal to the interface. In addition, it dctects interference
(another transceiver transmitting at the same time as this onc) and informs: the interface.

The transcciver includes indicators (light-emitting diodes) for power OK, transmitted data,
received data, and interface attempting to jam the ether. A test button simulates an input of
continuous 1's from the interface, which should light all the lights (dimly) if the transceiver is
working. These indicators and the test button are uscful for rapidly tracking down network
problems. The transceiver requires its own power supply mounted ncarby; one power supply can
service three transccivers if they are all adjacent. High-voltage isolation between the cable and the
computer is provided by optical isolators within the transceiver.

2.4 The Interface

The interface is typically a wirc-wrap board containing about 120 TTL logic chips, which
plugs into the 1/0 bus of a computer and connccts it to the ether (through a transceiver.) The
interface implements the hardware protocols described in the next section, buffers incoming and
outgoing packets, gencrates and checks checksums, and -interrupts the host computer when a
packet is to be read out of the receive packet buffer or stored into the transmit packet buffer.
. These packet buffers shield the host computer from the: high speed of data transmission on the
cable. Instead of having to produce bits at a high rate, the host can produce them at a lower
rate, collect them into a packet,, and then tell the interface to transmit the packet in a single

ML:LSBDOC; AMBER 116 : 31-MAR-82-

Chaosnet . 5 Hardware Protocols

burst of high-spced transmission.

Interfaces currently exist for Lisp machines, for DEC LSI-11 micro-computers, and for the
DEC Unibus [UNIBUS], which allows Chaosnet to be attached to pdpll’s, VAX’s, and the
peripheral processors of most pdpl0’s. Programming documentation for this compatible family of
interfaces appears later in this paper.

Interfaces for other computers are likely to cxist in the future. The cxisting intcrface design
does not make any unusual special demands of its host computer and should be casily adaptable
to other architectures.

2.5 Hardware Protocols

The purpose of these protocols is to deliver packets intact from one node to another node on
the same cther, with fairly high probability of success, and to guarantee to give an error
indication or lose the packet entirely if it is not dclivered intact.- An additional purpose is to
provide high performance and not to bog down when subjected to a heavy load.

Bits arc represented on the cther using a technique which is called Upright Biphase NRZI.
Each bit cell, which is approximately 250 nanoseconds long, begins with a transition in state,
from high to low or from low to high. This transition marks the beginning of a bit ccll and
provides sclf-clocking. 3/4 of the way through the bit cell, the state of the cable is sampled;
high represents a 1 and low represents a 0. If the bit being represented is the same as the
previous bit, there will be one transition at the beginning of the bit cell and a sccond in the
middle of .the bit cell. If the bit being represented is the opposite of the previous bit, there will
be no. transition in the middle of the bit cell since the clock transition will have sct the cable to
the desired state. The AC frequency of the signal on the cable varies betwecen 1/2 the bit rate
and the full bit rate.. The information bit-rate is 4 million bits per sccond. '

The sclf-clocking featurc allows for slight variations in transmission and cable propagation
speed. However, since the 3/4 of a bit cell delay is a fixed delay, -only modest variations in
speed can be tolerated. A crystal clock is used as the source of the transmit timing in the
interface, '

Since there is always at least one state-transition per bit cell, the states where the ether
remains high or low for an appreciable time are available for non-data uses. If the ether remains
low for more than about two bit cells, it is considered to be not-busy. This condition marks the
end of a packet and allows somcone clse to transmit. Note that if no transceivers are active, the
terminations will hold the ether low.

If the cther remains high for about two bit cells, this is an "abort signal”. Abort signals are
used for two purposes. If the transceiver detects a collision (two nodes trying to transmit at the
same time), cach transmitting interface ceases to transmit and sends an abort signal (four bit cells
long), which tells all receivers to ignore the aborted packet and ensures that the other transmitter
also aborts. Thus when a collision occurs, the cther is cleared as soon as possible to help prevent
long tic-ups under conditions of heavy load. 'The other use for the abort signal is in hardware
flow-control. When a receiving interface determines that an incoming packet is addressed to it,
but its reccive buffer already contains a packet, it sends an abort signal which causes the

ML:LSBDOC;AMBER 116 . . v . ‘ 31-MAR-82

Chaosnet 6 Fther Contention

transmitter to stop. This serves the dual purpose of immediately informing the transmitter that its
message did not get through, and preventing the cther from being tied up while a long packet is
transmitted which the recciver cannot receive.

Packets are transmitted over the cther in reverse bit-order, for hardware convenicnce. The
three header words, which to the software appear to be at the c¢nd of the packet, arc transmitted
first, in the order check, source, destination. The data words, in reverse order;, follow. Words
are. transmitted least-significant bit first. Of course, the softwarc nced not be aware of this
reversal; packets arrive at the destination in the same form as they were created by the source.
At the end of the packet, an cxtra zero bit is appended to bring the cther to the low state so
that an cxtra spurious clock-transition will not be gencrated when it goes idle. This bit is stripped
off by the interface and is never scen by software.

The check word is used for crror detection, as described above. The source word is made
available to the software, which ignores it in most cascs, and also scrves to synchronize the clocks
in the collision-avoidance mechanism which is described below. The destination word is compared
by each recciver against its own address. If they match, or-if the destination is zero, or if the
software sclects the "match any destination” mode, the packet is placed in the receive packet
buffer and the host computer is interrupted. . The zero destination feature is used for "broadcast”
. messages. Note that a receiver whose packet buffer is full will only gencrate an abort signal if th
packet was specifically addressed to it. :

2.6 Ether Contention

Chaosnet has no centralized control clement; when a network node has a message to transmit,
its interface scizes the cther and transmits a packet. The time when it scizes the ethier is
determined only by state inside that particular interface and by the local state of the cable at the
point where that interface’s transceiver is attached.

If two interfaces should dccide to seize the cther and transmit at the same time, their
transmissions will interfere and no useful information will be transmitted. This is called a
collision. Collisions arc the principal limitation on the bandwidth of a heavily-loaded cther-type
network, and should be avoided. (However, ncither PARC’s network nor MIT’s network has yet
been operated with a heavy enough load to make collisions really significant.)

Chaosnet uses a novel collision avoidance technique. First of all, an interface will never
initiate transmission unless the ether is scen to be not busy, ie. it has been in the low state for
some time. This ensures that collisions can only occur near the beginning of a packet. Once
transmission of a packet has gotten well started, the ether is effectively "scized" (all interfaces
realize that it is busy) and transmission will continue successfully through to the end of the
packet. The amount of cther transmission time wasted by a collided packet is therefore limited to
the round-trip cable propagation delay. This technique is called carrier sense.

Sccondly, the hardware uses a time-division technique to attempt to prevent two interfaces
from initiating transmission at the same time. This technique should prevent essentially all
collisions while imposing only a modest delay in the initiation of transmission. It is designed so
that it works better as the load on the cther increases; the wasted time between packets and the
relative rate of collisions both decrease. ‘

ML:LSBDOC;AMBER 116 ' 31-MAR-82

Chaosnet 7 Ether Contention

The basic ideca is that cach. interface is assigned a time-slot, or furn, according to its address.
It may only initiate transmission during its turn, 'The turns are spaced far cnough apart that if
one interface initiates transmission, every other interface will perceive that the cther is busy by the
time its own turn arrives, and will not initiate an interfering transmission. Each interface contains
a time-slot counter which counts while the cther is not busy, kceping track of whose turn it is.
Each packet synchronizes the counters in all of the interfaces by setting them from the source
address of that packet; at the time the packet was transmitted, it mwust have been the turn of the
interface that transmitted it.

Another way to think of this is to make an analogy with ring nctworks. One can imagine a
virtual token which. passcs down the cable unfil it gets to the end, then jumps to the beginning of
the cable and repeats. An interface may only initiate transmission at the instant the token passes
‘by it. - When an interface transmits, the token stops moving and remains at that interface until the
end of the packet, whercupon it continues down the cable, passing cvery other interface, giving
them cach a chance to transmit before letting the first interface transmit a second packet.

The token is not represented by any physical transmission on the cable. “That would constitute
a form of centralized control, and would lcad to- rcliability problems if the token was lost or
duplicated. Instcad, every interface contains a time-slot counter which keeps track of where the
token is thought to be. Every time a packet is transmitted these counters are brought up-to-date,
The token cannot be lost because a counter by its nature cventually returns to all previous states.
It does not matter if the token is duplicated (i.e. the counters lose synchronization) occasionally,
since this will only cause collisions, which we know how to detect and deal with, and since the
first successful transmission will resynchronize all counters. The basic mechanism of the cther
" network with contention and collisions is known to work, and the collision-avoidance scheme is an
added-on optimization which improves performance without changing the basic mecchanism.

There is a finite propagation delay time between interfaces, and this time is not small
comparcd with the bit-rate of Chaosnet, nor when compared with the desirable length of a time
slot. This time consists: of the delay in the cable, about 5 nanoscconds per meter, and the dclay
through the two transceivers, about 220 nanoseconds. This propagation delay means that the time-
slot counters in two different interfaces cannot be exactly synchronized, and that when interface A
initiates transmission interfacc B will not instantancously sec that the cther is busy. Special
relativity tells us that in fact the concept "exactly synchronized" is meaningless. Since the two
time-slot counters arc not in the same place, the only way we can compare them is to send a
message from one to the other, through the cther, containing the reading of the counter. But this
message takes non-zero (ime to get there, so the counter-reading it contains is wrong by the time
it is compared against the other counter! We in fact’ do send messages containing counter
rcadings; the source address in a packet cquals the reading of the time-slot counter in the
interface that sent it—at the time it was sent. Since the network nodes are not in relative motion,
we can measure the distance between them and use that information to improve their
synchronization.

What we are trying to do is to prevent collisions. This means that if interface A starts
transmitting a packet in its turn, then by the time interface B thinks that its own turn has arrived,
it must perceive the cther as busy. We will assign addresses (and hence' time slots) and sct the
length of a time slot in such a way that this will happen. Suppose the maximum delay through
the cther between A and B is ¢. This would be the delay for one of them sending a packet to
the other; the delay between A’s Teceipt of a third party’s packet and B’s rcceipt of that packet is

ML:L.SBDOC;AMBER 116 o : 31-MAR-82

Chaosnet . 8 Ether Contention

less, especially if the third party is between A and B on the cable. Then the maximum perceived
difference between a clock at 'A and a clock at B is 2¢; if a message is sent from B to A
synchronizing the clocks, and then a message is sent from A to B containing A’s clock rcading, at
B this clock rcading will be slow by 21.

When a packet transmitted by A arrives at B, B's clock may read as mwuch as 2 carlicr. or
later than A’s turn, depending on the transmission dircction of the last synchronizing message. In
order to guarantec that B's turn has not yet happened, the time between any of A’s turns and
any of B’s turns must always be at least 2¢, twice the maximum propagation delay through the
cther between A and B. This is the important idea! We cause this to be true by assigning
addresscs starting at onc end of the cable; cach node’s address is the previous node’s address plus
twice the propagation delay between them, divided by the length of a turn. It is casy to see that
if this is donec for all adjacent pairs, the condition will automatically be true for non-adjacent
pairs as well, When we get to the end of the cable, we must assign a number of cmpty slots
cqual to twicc the propagation delay of the full length of cable, to provide the necessary
scparation between the turns of the two nodes at the ends of the cable.

The virtual token travels through the network at a substantially slower speed than a real signal
such as a packet; in the fastest case, when nodes are very far apart, it travels at just half the
speed of a rcal signal. Since a Chaosnet cther has the geometry of a line, as compared to the
ring net’s circle, the virtual token is also slowed down by the nced to rcturn from the cend of the
cable to the beginning. This slower speed of the token is the price onc pays for the increased
robustness of Chaosnet as compared with a ring nctwork., In a real systcm, we slow the token
down even more to provide a margin of safety. The speed of the network is not significantly
affected by the slow token, since the interval between packet transmissions by a single node is
much longer than the round-trip time of the token., Indecd, if the network is being used
primarily for file transfer, and hence the packets are large, the transmission time alone for a
typical packet is several times the round-trip time of the token. A typical value for the token’s
round-trip time is 64 microscconds.

In spite of all this, sometimes collisions will occur anyway. If the cable has been idle for a
long time, the various clocks will have lost synchronization. If a source address is corrupted by a
transmission crror, any interface that secs that source address will sct its clock to an incorrect
value. Sometimes a packet will collide with random noise rather than another legitimate packet.
In addition, the transmitter does not distinguish receiver-busy aborts from real collisions,

When a collision does occur, we recover from it (in softwarc) by retransmitting the packet
again a couple of times, hoping that we will be lucky enough not to have another collision, or
that the receiver will soon clear its packet buffer. This retransmission is done by the software, not
the hardware, since the hardware destroys the packet in its packet buffer in the process of
transmitting it. But if collisions continue to occur, we give up and let somebody eclse have the
cther. The packet is lost. A higher level of protocol will soon realize that it has been lost and
retransmit it. We assume that there is cnough randomness in the higher-level softwarc that the
two nodes which originally collided will not collide again on the retransmission by deciding to
retransmit at precisely the same instant,

ML:LSBDOC;AMBER 116 . . : 31-MAR-82

Chaosnet 9 Software Protocol—World View

3. Software Protocol-~World View

The purpose of the basic software protocol of Chaosnet is to allow high-speed communication
"~ among processes on different - mach'nes, with no undetected transmission errors. ‘I'he speed for file
transfers in real-life circumstances was to be comparable with an incxpensive magnetic tape drive
(30000 characters per sccond, or about 10 times the speed of the Arpanct). We actually get about
double this in some favorable cases. To achicve this spced it was important to design out
bottlenecks such as arc found in the Arpanct, for instance the control-link which is shared
between multiple connections and the nced to acknowledge cach message before the next message
can be sent. Thé protocol must be simple, for the sake of rcliability and to allow its use by
mode:¢ computer systems. A full Chaosnet Network Control Program is just about half the size
of an Arpanct NCP on the same machine, and the protocol allows low-performance
implementations to omit some features. A minimal implementation cxists for a single-chip
microcomputer.

3.1 Connections

The principal service provided by Chaosnet is a connection between two user processes. This
is a full-duplex rcliable packet-transmission channel. The network undertakes ncver to garble,
lose, duplicate, or resequence the packets; in the cvent of a scrious crror it may break the -
conncction off entirely, informing both uscr processes. User programs may cither deal in terms of
~ packets, or ignore packet boundarics and treat the connection as two uni-directional streams of 8-
bit or 16-bit bytcs.

On top of the conncction facility "user" programs build other facilitics, such as file access,
interactive terminal conncctions, and data in other byte sizes, such as 36 bits. The meaning of
the packets or bytes transmitted through a conncction is defined. by the particular higher-level
protocol in use. '

In addition to reliablc communication, the protocol provides flow control, includes a way by
which prospective communicants may get in touch with cach other (called contacting or
rendezvous), and provides various nctwork maintenance and housckeeping facilitics, These are
discussed later.,

3.2 Contact Names

When first establishing a connection, it is nccessary for the two communicating processes to
contact cach other. In addition, in the usual user/server situation, the server process does not
exist beforchand and nceds to be created and made to exccute the appropriate program.

We chose to implement contacting in an asymmetric way. (Once the conncction has been
established cverything is completely symmetric.) One process is designated the user, and the other
is designated the server. The server has some contact name to which it listens. The user process
requests its local opcrating system to connect it to the server, specifying the nctwork node and
contact name of the server. The local operating system sends a message (a Request for
Connection) to the remote opcrating system, which examines the contact name and creates a

ML:LSBDOC;AMBER 116 ‘ 31-MAR-82

Chaosnet 10 | Addresses and Indices

conncction to a listening process, creates a new scrver process and connects to it, or rcjects the
request.

Automatically discovering to which host to connect in order to obtain a particular scrvice is a
subject for higher-level protocols and for further rescarch, It is not dealt with by Chaosnet.

Once a conncction has been cstablished, there is no more need for the contact name and it is
discarded. Indecd, often the contact name is simply the name of a scrvice (such as "TELNET™)
and scveral uscrs should be able to have simultancous conncctions to scparate instances of that
service, so contact names must be reusable,

In the case where two cxisting processes that alrcady know- about cach other want to cstablish
a conncction, we arbitrarily designate. one as the listener (scrver) and the other as the requester
(user). The listener somehow gencrates a "unique” contact name, somchow communicates it to .
the requester, and listens for it. The requester rcquests to connect to that contact name and the
connection is cstablished. In the most common case of cstablishing a sccond connection bétween
two processes which are alrcady connccted, the index number (sce below) of the first connection
can scrve as a unique contact name.

Contact names are restricted to strings of upper-case letters, numbers, and ASCII punctuation.
The maximum length of a contact name is limited only by the packet size, although on ITS hosts
the names of automatically-started servers arc limited by the file-system to six characters.

Sec page 21 for complete details of how to establish a connection.

3.3 Addresses and Indices

Fach node (or host) on the nctwork is identified by an address, which is a 16-bit number.
These addresses are used in the routing of packets. There is a table (the system hosts table,
SYSBIN;HOSTS2, in the case of ITS) which relates symbolic host names to numecric host
addresses.

An address consists of two ficlds. The most-significant 8 bits identify a subner, and the least-
significant 8 bits identify a host. within that subnct.- Both ficlds must be non-zero. A subnet
corresponds to a single transmission path. Some subnets are physical Chaosnct cables (efhers),
while others are other media, for instance an interface between a pdpl0 and a pdpll. The
significance of subnets will become clear when routing is discussed (see section 3.7, page 14).

When a host is connected to an cther, the host’s hardware address on that cther is the same
as its software address, including the subnet ficld.

A connection is specified by the names of its two ends. Such a name consists of a 16-bit host
address and a 16-bit connection index, which is assigned by that host, as the name of the entity
inside the host which owns the connection. The only requirements placed by the protocol on
indices are that they be non-zero and that they be unique within a particular host; that is, a host
may not assign the same index number to two different conncctions unless enough time has
clapsed between the closing of e first connection and the opening of the sccond connection that
confusion between the two is unlikely.

ML:L.SBDOC;AMBER 116 : | 31-MAR-82

Chaosnet . ' 11 Packet Numbers

Typically the least-significant » bits of an. index arc uscd as a subscript into the opcrating
system’s tables, and the most-significant 16-n bits are incremented cach time a table slot is reused,
to provide uniquencss. The number of uniquizing bits must be sufficiently large, compared to the
rate at which conncction-table slots are reused, that if two connections have the samc index, a
packet from the old connection cannot sit around in the network (c.g. in buffers inside hosts or
bridges) long enough to be scen as belonging to the new connection.

It is important to notc that packets are nof sent between hosts (physical computers). They are
sent between user processes; more exactly, between channels attached to user processes. Each
channel has a 32-bit identification, which is divided into subnet, host, index, and uniquization
ficlds. From the point of a view of a user process using the nctwork, the Network Control
Program scction of his host’'s operating system is part of the network, and the multiplexing and
demultiplexing it performs- is no different from the routing performed by other parts of the
network. It makes no difference whether two communicating processes run in the same host or in
different hosts.

Certain control packets, however, are sent between hosts rather than users. This is visible to
uscrs when opening a conncction; a contact name is only valid with respect to a particular host.
This is a compromise in the design of Chaosnet, which was made so that an opcrational system
could be built without first solving the rescarch and engincering problems associated with making
a diverse set of hosts into a uniform, onec-level name space.

3.4 Packet Numbers

There are two kinds of packets, controfled and uncontrolled. Controlled packets are subject to
crror-control and flow-control protocols, dcscribed below (sce section 3.8, page 17), which
guarantec that each controlled packet is delivered to its destination cxactly once, that the
controlled packets belonging to a single conncction are delivered in the same order they were sent,
and that a slow rcceiver is not overwhelmed with packets from a fast sender. Uncontrolled
packets arc simply transmitted; they will usually but not always arrive at their destination exactly
once. 'The protocol for using them must take this into account.

Each controlled packet is identified by an unsigned 16-bit packet number. Successive packets
are identified by sequential numbers, with wrap-around from all 1's to all 0’s. When a connection
is first opened, cach end numbers its first controlled packet (RFC or OPN) however it likes, and
that sets the numbering for all following packets.

Packet numbers should be compared modulo 65536 (2 to the 16th), to ensure correct handling
of wrap-around cases, On a pdpll, use thc instructions
CMP A,B ’
BMI A_is_less
Do not use the BLT or BLO instruction. On a pdpl0, use the instructions
SUB A,B
TRNE A, 100000
JRST A_is_Tless
Do not use the CAMGE instruction. On a Lisp machine, use the code

ML:LSBDOC; AMBER 116 : . : _ 3J1-MAR-82

Chaosnet

12 Packets

(IF (BIT-TEST #0100000 (- A B))
‘ <A 1is less>)
Do not use the LESSP (or <) function.

3.5 Packets

A packet consists of a header, which is 8 16-bit words, and zero or more 8-bit or 16-bit bytes
of accompanying data. In addition there are three words put on by the hardware, described
carlier in this paper.

The following are the 8 hecader words:

Operation

Count

Destination Address

Destination Index

Source Address

Source Index

The most-significant 8 bits of this word are the Opcode of the packet, a
number which tells what the packet means. The 128 opcodes with high-order
bit 0 are for the use of the network itself. The 128 opcodes with high-order

"bit 1 are for use by users. The various opcodes are described in chapter 4,

page 20.

The least-significant 8 bits of this word are rescrved for future use, and must
be zero.

The most-significant 4 bits of this word arc the. forwarding count, which tells
how many times this packet has been forwarded by bridges. Its use is
explained in the Routing section.

The lcast-significant 12 bits of this word arc the data byte count, which tells
the number of 8-bit bytes of data in the packet. The minimum value is 0 and
the maximum valuc is 488. Note that the count is in 8-bit bytcs even if the
data are regarded as 16-bit bytes.

The byte count must be consistent with the actual length of the hardware
packet. Since the hardware cyclic redundancy check algorithm is not sensitive
to cxtra zero bits, packets whose hardware length disagrees with their software
length are discarded as hardware errors.

This word contains the network address of the destination host to which this
packet should be sent.

This word contains the connection index at the destination host of the
connection to which this packet belongs, or 0 if this packet docs not belong to
any connection.

This word contains the network address of the source host which originated this
packet.

This word contains the connection index at the source host of the connection
to which this packet belongs, or 0 if this packet does not belong to any
connection. :

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet 13 Data Formats

Packet Number If this is a controlled packet, this word contains its identifying number.

Acknowledgement The use of this word is described in section 3.8, page 17.

3.6 Data Formats

Data transmitted through Chacsnet gencrally follow Lisp Machine standards, Bits and bytes
arc numbered from right to left, or lcast-significant to most-significant. The first 8-bit byte in a
16-bit word is the one in the arithmetically least-significant position. The first 16-bit word in a
32-bit double-word is the onec in the arithmetically least-significant position.

The character sct used is dictated by the higher-level protocol in use. Telnet and Supdup, for
example, cach specifies its own ASClI-based character sct. The "default" character sct-—used for
new protocols and for text that appears in the basic Chaosnet protocol, such as contact names—is
the Lisp Machine character set [CHINUAL] This is basically ASCII, augmented with additional
printing characters and a different sct of format-cffector (or "control”) characters.

Because the rules for bit numbering conflict with the native bytc-ordering in pdpl0s, and
because it is- quite cxpensive to rearrange the bytes using the pdpl0Q-instruction set, pdplls which
act as front-ends for pdplOs must reformat packets passing through them, and pdplOs interfaced
directly to the network must have interfaces capable of rearranging the bytes. This requires that
the network protocols cxplicitly specify which portions of cach type of packet are 8-bit bytes and
which are 16-bit bytes. In general the header is 16-bit bytes and the data ficld is 8-bit bytes, but
certain packet types (OPN, STS, RUT, and opcodes 300 through 377) have 16-bit bytes in the
data ficld. Use of 32-bit data is rare, so no provision is made for putting 32-bit data into the
standard format for ndpl0s. On our current network pdplOs are the only hosts which require this
packet reformatting assistance, because most modern computers number their bits and bytes from
. lcast-significant to most-significant. ‘

The effcct of this is that user programs that use the Chaosnet always sce the data in a packet
and its header in the native form of the machine they are running on, and the nccessary
conversions are automatically applied by the network. This statement applies to the order of bits
and bytes. within a word, but not to the character sct (when packcets contain textual data) which is
dictated by protocols.

Unlike some other network protocols, Chaosnet does not use any software checksumming.
Because of the diversity of hosts with different architectures attached to- the Chaosnet, it is
impossible to devise a checksumming algorithm which can be cxecuted compatibly and cfficiently
on all hosts. Instead, Chaosnet rclies on error-chiccking hardware in the nectwork interfaces, and
assumcs that other sources of packet damage that checksums could detect, such as software bugs
in a Network Control Program, either do not occur or will produce symptoms so obvious that
they will be detected and fixed immediately.

ML:LSBDOC;AMBER 116 ‘ , 31-MAR-82

Chaosnet , 14 Routing

3.7 Routing

Routing consists of deciding how to deliver a packet to the network node specified by the
destination address ficld of the packet. Tlaving reached that node, the packet can trivially be
delivered to the destination user process via the destination index. In general routing may be a
multi-step process involving transmission through scveral subnets, since there may not be a direct
hardware conncction between the source and the destination., Note that the routing decision is
made separately for each packet, with no reference to the concept of conncctions.

Any host that is connected to more than one subnet acts as a bridge and forwards packets
from onc subnet.to another when necessary. There could also be hardware bridges which are not
hosts, although we have not yet designed any such device. Since routing does not depend on
connections, a bridge is a very simple device (or program) which docs not need much state. 'This
makes the bridge function inexpensive to piggyback onto a computer which is also performing
other functions, and makes rcliable bridge software ecasy to implement.

The difference between a bridge and a gateway, in our terminology, is that a bridge forwards
© packets from one sub-Chaosnct to another, without modifying the packets or understanding them
other than to look at the destination address and increment the forwarding count, and docs not
deal with connections nor with flow control, while a gatcway intcrconneets two networks with
differing protocols and must understand and translate the information passing through it
Gateways may also have to deal with flow and error control because they connect networks with
slow or differing speeds. Bridges are suitable for local nctworks while gateways arc suitable for
long-distance networks and for connecting networks not produced by the same organization,

To prevent routing loops, cach packet contains a forwarding-count ficld. Each bridge that
forwards the packet increments this count; if the count reaches its maximum value the packet is
discarded. The crror-control protocol will recover discarded packets, or decide that no viable
connection can be established between the two hosts.

The implementation of routing in an operating system is as follows, given a packet to be
routed,” which may have comc in from the nctwork or may have been originated by the local
host. First, check the packet’s destination address. If it is this host, receive the packet.
Otherwise, increment the forwarding count and discard the packet if it has been forwarded too
many times. If the destination is some other host on a subnet to which this host is dircctly
connected, - transmit the packet on that subnet; the destination host should reccive it. If the
destination is a host on a subnct of which this host has no knowledge, look up the subnet in the
host’s routing table to find the best bridge to that subnet, and transmit the packet to that bridge.

Each host has a routing table, indexed by subnet number, which tells how to get packets to
‘hosts on that subnet. Each entry contains: (exact details may vary depending on implementation)

Type The type of connection between the host and this subnet. This can be one of
Direct, Bridge, or Fixed Bridge. Direct mecans a physical connection such as a
Chaosnet interface. Bridge mcans an indirect connection, via a packet-forwarding
bridge. Which bridge is best to use is to be discovered by this routing
mechanism, Fixed Bridge is the same except that the automatic mechanism is not
to change which bridge is used. This is useful to set up explicit routing for
purposes such as network debugging.

ML:1L.SBDOC; AMBER 116 : . ‘ 31-MAR-82

Chaosnct 15 Routing

Address Identifics the. connection to this subnet in a way which depends on the type. For
a direct connection, this identifics the piece of hardware which implements the
connection, (It might be a Unibus address.) For a bridge or a fixed bridge, this
is the network addr:ss of the bridge.

Cost A measure of the cost of sending a packet through this route. Costs are used to
sclect the best route from among alternatives in a way described below. For a
dircct connection, the cost is 10 for a direct interface between two computers (e.g.
between a pdpl0 and its front-end pdpll), 11 for a Chaosnet cther cable, 20 for
a slow medium such as an asynchronous line, etc. For a bridge or a fixed bridge,
the cost is specified by the bridge in a RUT packet (described below).

The routing table is initialized with the number of a more or lcss arbitrary existent host and a
high cost, for cach subnet to which the host is not directly connccted. Until the correct bridge is
discovered (which normally happens within a minute of coming up), packets for that subnet will
be bounced off of that arbitrary host, which probably knows the right bridge to forward them to.

The cost for subnets accessed via bridges is increased by -1 cvery 4 seconds, thus typically
doubling after a minute. When the cost reaches a "high" value, it sticks there, preventing
problems with arithmetic overflow. The purpose of the increasing cost is to discount the value of
old information. The cost for subnets accessed via direct connections and fixed bridges docs not
increase.

Every 15 seconds, a bridge advertises its presence by broadcasting a routing (RUT) packet on
- each subnet to which it is directly connected. Each host on that subnet receives the RUT packet
and uscs it to update its routing table. If the host’s routing table says to access a certain subnet
via bridges, and the RUT packet says that this is the best bridge to that subnet, the routing.table
is updated to say that this bridge should be used.

Note that it is important that the rate at which the costs increase with time be slow enough
that it takes more than twice the broadcast interval to increase the cost of one hop to be more
than the cost of two hops. Otherwise the routing algorithm is not wcll-bechaved. Suppose subnet
A has two bridges (e« and) on it, and bridge « is connccted to subnet B but bridge B is not (it
gocs to some other irrelevant subnet). Then if the costs increase too fast and bridges a and g do
not broadcast their RUT packets exactly simultancously, sometimes packets for subnet B may be
sent to bridge B because its cost appears lower. Bridge g will then send them to bridge a, where
they should have gone directly. In more complicated situations packets can go around in a circle
some of the time.

The source address of a RUT packet must be the hardware address of the bridge on the
particular subnet on which the packet is broadcast. The destination address of a RUT packet
must be zero; RUT packets are not forwarded onto other subnets. The byte count of a RUT
packet is a multiple of 4 and the packet contains up to 122 pairs of 16-bit words:

word 1 The subnet number of a subnet which this bridge can get to, directly or
indirectly, right-adjusted. '

- word 2 The cost of sending to that subnet via this bridge. This is the current cost from
the bridge’s routing table, plus the cost for the subnet on which the routing
packet is being broadcast. Adding the subnet cost eliminates loops, and prefers

ML:LSBDOC;AMBER 116 7 31-MAR-82

Chaosnet 16 Routing

onc-hop paths over two-hop paths.

When a host receives a RUT packet, it processes each 2-word centry by comparing the cost for
that subnet against its current cost; if it is less or equal the cost and the address of the bridge
are cntered into the routing table, provided that that subnet’s routing table cntry is not of the
Direct or Fixed Bridge type.

When there are multiple equivalent bridges, the traffic is sprcad amoeng them only by virtue
of their RUT packets being sent at different times, so that sometimes one bridge has the lower
cost, and somctimes the other. Tf this isn’t adequate, hosts could have hairier routing tables
which remember more than one possible route and usc them according to their relative costs, but
so far this has not been nccessary since the network traflic is not so high as to saturatc any onc
bridge.

The design of this routing scheme is predicated on the assumption that the network geometry
is simple, there are few multiple paths, and the length of any path is quite short. This makes
morc sophisticated schemes unnecessary.

An important feature of this routing scheme is that the size of the table is proportional to the
number of subnets, not to the number of hosts. Thus it docs not take up an inordinate amount
of memory in a small computer, and no complicated dynamic allocation schemes are required.

In the case of a pdpl0 which accesses the Chaosnet through a front-end pdpll, we dcfine the
interface between the two computers to be a subnet, and regard the pdpll as a bridge which
forwards packets between the network and the pdplO. This gives the pdpl0 and the pdpll
separate addresses so that we can choose to talk to either one, even though they are part of the
same computer system. This is occasionally useful for maintenance purposes. It becomes more
uscful when the front-end pdpll has peripherals which are to be accessed through the Chaosnet,
since they can simply look like hosts on that pdpll’s private subnet.

In the case of a host which is attached to more than one subnet, it is undcsirable for the host
to have more than one address, since this would complicate user programs which use addresses.
Instcad, one of the host’s network attachments is designated as primary, and that address is used
as the host’s single address. The other attachments are regarded as bridges which can forward to
that host. Somectimes, we sitmplify the routing by inventing a new subnet which contains only that
host and has no physical realization. The host’s address is an address on that fake subnet. All of
the host’s network attachments are regarded as bridges which know how to forward packets to that
subnet.

The ITS host table allows a host to have multiple addresses on multiple networks, but when
you ask for the address of a certain host on a certain network you only get back the primary
“address. All packets coming from that host have that as their source address.

MIL:LSBDOC;AMBER 116 ‘ 31-MAR-82

Chaosnet : _ 17 Flow and Error Control

3.8 Flow and Error Control

The Network Control Programs (NCPs) conspire to cnsure that data packets are sent from
user to user with no garbling, duplications, omissions, or changes of order. Sccondarily, the
NCPs attempt to achicve a maximum rate of flow of data, and a mirimum of overhcad and
retransmission. '

The fundamental basis of flow-control and ecrror-control in Chaesnct is retransmission. Packets
which arc damaged in transmission, which won’t fit in buffers, which arc duplicated or out-of-
sequence, or which otherwise arc embarrassing arc simply discarded. Packets are periodically
retransmitted until an indication that they have been successfully reccived is returned. This
retransmission is end-to-end; any intermediate bridges do not participate in flow-control and error-
control, and hence are free to discard any packets they wish,

There are actually two kinds of packets, controlled and uncontrolled. Controllcd packets are
retransmitted and delivered reliably; -most packets, including all packets used by the user (except
for UNC packets), are of this type. Uncontrolled packets arc not retransmitted; these arc used
for certain lower-level functions of the protocol such as the implementation of flow and error
control. The usage of these packets is designed so that they need not be delivered reliably.

Retransmission of a packet continucs until stopped by a signal from the receiver to the sender
called a receipt. A receipt contains a packet number, and indicates that all controlled packets with
a packet number less than or cqual (modulo 65536) to that number have been successfully
‘received, and therefore need not be retransmitted any more. A receipt does not indicate that
these packets have been processed by the destination user process; it simply indicates that they
have successfully arrived in the destination host, and arc guarantced to be there when the user
process asks for them. :

There is another signal from the recciver to the sender, called an acknowledgement. An
acknowledgement also contains a packet number, and indicates that all controlled packets with a
packet number less than or cqual (modulo 65536) to that number have been rcad by the
destination user process. This is used to implement flow-control. Note that acknowledgement of a
packet implics receipt of that packet. In fact, if the receiving process does not fall behind,
explicit reccipts necd not be sent, bccz?usc the receiving host will not have to buffer any packets,
but will acknowledge them as soon as they arrive,

The purpose of flow-control is to match the speeds of the sending and receiving processcs.
The cxtremes to be -avoided- are, on the one hand, too small a "buffer size" causing the data
transmission rate to be slower than it could be, and on the other hand, large numbers of packets
piling up in the network because the sender is sending faster than the receiver is receiving. [t is
also necessary to be aware that receipts and acknowledgements must be transmitted through the
nctwork, and hence have an associated cost,

Chaosnet flow-control operates by controlling the number of packets "in the nctwork”. These
are packets which have been emitted by the sending user process, but have not been
acknowledged. We dcfine a window into the set of packet numbers. The beginning of this
window is the first packet number which has not been acknowledged, and the width of the
window is a fixed number cstablished when the connection is opened. The sending process is
only allowed to emit packets whose packet numbers lie within the window. Once it has emitted

ML:LSBDOC: AMBER 116 : , o 31-MAR-82

Chaosnct 18 Flow and Error Control

all of the packets in the window, (he window is said to be full. Thus, the size of the window is
the "buffer size" for the connection, and is the maximum number of packets that may need to be
buffered inside an NCP (sending or receiving). Acknowledgements move the window, making it
not full, and allowing the sending process to emit additional packets.

We do not receipt and acknowledge every single controlled packet that is transmitted through
a conncction, since that would double or triple the number of packets scnt through the network
to move a given amount of data. Instcad we batch the reccipts and acknowledgements. But if
acknowledgements are not sent sufficiently often, the data will not flow smoothly, because the
window will often appear full to the sender when it is not. If reccipts are not sent sufficiently
often, there will be unnceessary retransmissions.

Whenever a packet is sent through a conncction, an acknowledgement for the reverse
dircction of that conncction is "piggy-backed" onto it, using the Acknowledgement ficld in the
packet header. For interactive applications, where there is much traffic in both dircctions, this
provides all the nccessary acknowledgement and receipting with no need to send any extra packets
through the network.

When this does not suflice, STS (status) packets arc gencrated to carry receipts and
acknowledgements. STS packets arc uncontrolled, since they are part- of the mechanism that
implements controlled packets. 1f an STS packet is duplicated, it docs no harm. 1If an STS .
packet is lost, mechanisms exist which will cause a replacement to be gencrated later. An STS
packet carries scparate receipt and acknowledgement packet numbers.

When a user process reads a packet from the network, if the number of packets which should
have been acknowledged but have not been is more than 1/3 the window size, an STS is
generated to acknowledge them. Thus the preferred batch size for acknowledgement is 1/3 the
window size. The advantage of this size is that if one STS is lost, another will be gencrated
before the window fills up (at the 2/3 point).

When a packet is reccived with the same packet number as one which has already been
successfully received, this is evidence of unnccessary retransmission, and an STS is generated to
carry a receipt back to the sender. If this STS is lost, the next retransmission will stimulate
another one. Thus receipts are normally implied by acknowledgements, and only sent scparately
when there is evidence of unnecessary retransmission.

Retransmission consists of sending all unreceipted controlled packets, except those that were
last sent very recently (within 1/30°th of a second in ITS.) Retransmission occurs every 1/2
sccond. This interval is somewhat arbitrary, but should be close to the response time of the
systems involved. Retransmission also occurs in response to an STS packet, so that a receiver
‘may cause a faster retranmission rate than twice a second if it so desires. This should never cause
uscless retransmission, since STS carries a receipt, and very-recently-transmmitted packets, which
miglit still be in transit through the nctwork, are not retransmitted.

Another operation is probing, which consists of sending a SNS packet, in the hopc of
cliciting either an STS or a 1.OS, depending on whether the other side believes the conncction
exists. Probing is used periodically as a way of testing that the connection is still open, ‘and also
serves as a way to get STS packets retransmitted as a hedge against thc loss of an
acknowledgement, which could otherwise stymic the connection. SNS packets are uncontrolled.

ML:LSBDOC;AMBER 116 ' 31-MAR-82

Chaosnet ' 19 Flow and Error Control

We probe every five seconds on conncctions which have unacknowlecged packets outstanding
(a non-empty window) and on connections which have not received any packets (neither data nor
control) for one minute. If a conncction reccives no packets for 1 1/2 minutes, this means that at
lcast 5§ probes have been ignored, and the conncction is declared to be broken; either the remote
host is down or there is no viable path through the network between the (wo hosts.

The receiver can generate "spontancous” STS’s, to stimulate retransinission and keep- things
moving on fast devices with insuffcient buffering for 1/2 sccond worth of packets. This provides
a way for the receiver to speed up the retransmission timecout in the sender, and to make sure
that acknowledges are happening often enough.

Note that the network still functions if cither or both partics to a connection ignore the
window. The window is simply an improver of cfficiency. Receipts have the same property. This
allows very small implementations to be compatible with the same protocol, which is uscful for
applications such as bootstrapping through the network.

It would be possible to have dynamic adjustment of the window size in response to observed
behavior. The STS packet includes the window size so that changes to it can be communicated.
However, this has not been found necessary in practice. Each higher-level protocol has a standard
pre-determined window size, which it establishes when it first opens a conncection, and this scems
to- be close cnough to optimum that carcful dynamic adjustment of it wouldn’t make a big
difference.

This scheme for flow-control and error-control is based on several assumptions. It is assumed
that the underlying transmission media have their own checking, so that they discard all damaged
packets, making packet checksums. unnecessary at the protocol level. The transit time through the
network is assumed to be fast, so that a fairly-small retransmission interval is practical, and
negative acknowledgements are not necessary. The error rate is assumed to be low so that overall
cfficiency is not affected by the simple-minded error recovery scheme of simply retransmitting all
outstanding packets. It is assumed that no reformatting of packets occurs inside the nectwork, so
that flow-control and error-control can operate on a packet basis rather than a byte basis.

ML:LSBDOC;AMBER 116 ‘ 31-MAR-82

Chaosnet . 20 Software Protocol—Dctails

4. Software Protocol--Details

In the following scctions, cach of the packet Opcodes and the use of that packet type in the
protocol is described. Opcodces are given as an octal number, a three-letter code, and a name.

Unless otherwise specified, the use of the ficlds in the packet header is as follows. The
source and destination address and index denote the two ends of the connection; when. an cnd
does not exist, as during initial connection establishment, that index is zero. 'The opcode, byte
count, and forwarding count fields have no variations. The packet number ficld contains
sequential numbers in controlled packets; in uncontrolled packets it contains the same number as
the next controlled packet will contain, The acknowledgement ficld contains the packet number of
the last packet seen by the user.

4.1 Connection Establishment

The following packet types are associated with creating and destroying conncctions. First the
packets arc described and then the dcetails of the various connection-cstablishment protocols are
given.

1 RFC Request for connection

All connections are initiated by the transmission of an RFC from the user to the server. The
data field of the packet contains thc contact name. The contact name can be followed by
arbitrary arguments to the server, delimited by a space character. The destination index field of .
an RIFC contains 0 since the destination index is not known yet.

RFC is a controlled packet; it is rctransmitted until some sort of response is received.
Because RFC’s are not sent over normal, error-controlled connections, a special way of detecting
and discarding duplicates is required. When an NCP receives an RFC packet, it checks all
pending RFC’s and all conncctions which are in the Open or RFC-received state (see section 4.7,
page 27), to see if the source address and index match; if so, the RFC is a duplicate and is
discarded. '

12 LSN Listen

A server process informs the local NCP of the contact name to which it is listening by
sending a I.SN packet, with the contact name in the data field. This packet is ncver transmitted
anywhere through the network. It simply serves as a convenient buffer to hold the server’s contact
name. When an RFC and a LSN containing the same contact name meet, the LSN is discarded
and the RFFC is given to the server, putting its conncction into the RFC-received state (sce section
4.7, page 27). The scrver reads the RFC and decides whether or not to open the connection.

2 OPN Open connection

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet 21 Connection Istablishment

OPN is the usual positive response to RIFC. The source index ficld conveys the server’s index
number to the user; the user’s index number was conveyed in the RFC. The data ficld of OPN
is the same as that of STS (sce below); it serves mainly to convey the server’s window-size to the
user. The Acknowledgement ficld of the OPN acknowledges the RIFC so that it will no longer be
retransmitted.

OPN is a controlled packet; it is rctransmitted until it is acknowledged. Duplicate OPN
packets are detected in a special way; if an OPN is received for a conncction which is not in the
REFC-sent state (sce section 4.7, page 27), it is simply discarded and an STS is sent. This can
happen if the conncction is opened while a retransmitted OPN packet is in transit through the
nctwork, or if the STS which acknowledges an OPN is lost in the nctwork.

3 CLS Close connection

CLS is the ncgative response to RFC. It indicates that no server was listening to the contact
name, and onc couldn’t be created, or for some reason the server didn’t fecl like accepting this
request for a conncction, or the destination NCP was unable to complete the conncction (e.g.
conncction table full.)

CLS is also used to close a connection after it has been open for a while. Any data packets
in transit may be lost. Protocols which requirc a reliable end-of-data indication should use the °
mechanism. for that (see section 4.4, page 24) before sending CLS.

The data ficld of a CLS contains a character-string cxplanation of the rcason for closing,
intended to be returned to a uscr as an error mcssage.

CLS is an uncontrolled packet, so that the program which sends it may go away immediately
afterwards, leaving nothing to retransmit the CLS. Since there is no error recovery or
retransmission mechanism for CLS, the use of CLS is necessarily optional; a process could simply
stop responding to its connection. However, it is desirable to send a CLS when possible to
provide an error message for the uscr.

4 FWD Forward a request for connection

This is a response to RFC which indicates that the desired service is not available from the
process contacted, but may be available at a possibly-different contact name at a possibly-differcnt
host. The data field contains the new contact name and the Acknowledgement
ficld—exceptionally—contains the new host number. The issuer of the RFC should issue another
RFC to that address. FWD is an uncontrolled packet; if it is lost in the network, the
retransmission of the RFC will presumably stimulate an identical FWD.

5 . ANS Answer to a simple transaction

This is another kind of response to RFC. The data field contains the entircty of the response,
and no connection is established. ANS is an uncontrolled packet; if it is lost in the network, the
retransmission of the RFC will presumably stimulate an identical ANS.

MIL:I.SBDOC;AMBER 116 31-MAR-82

Chaosnct 22 Connection Fstablishment

There are scveral conncction-initiation protocols implemented with these packet types. In
addition to those described here, there is also a broadcast mechanism; sce section 4.5, page 25.

When an RFC arrives at a host, the NCP finds a uscr process that is listening for this RFC’s
contact name, or creates a server process to provide the desired service, or responds to the RFC
itself if it knows how to provide the requested service, or refuses the request for connection. The
process that serves the RFC chooses which connection-initiation protocol to follow. This process is
given the RFC as data, so that it can look at the contact name and any arguments that may be
present,

A stream conmnection is initiated by an RFC, transmittcd from uscr to server. The server
returns an OPN to the user, which responds with an STS. These three packets convey the source
and destination addresses, indices, initial packet numbers, and window sizes between the two
NCP’s. In addition a character-string argument can be conveyed from the user to the server in
the RFC.

The OPN serves to acknowledge the RFC.and extinguish its retransmission. It also carrics the
server’s index, initial packet number, and window size. The STS scrves to acknowledge the OPN
and extinguish its retransmission. It also carrics the user’s window size; the user’s index and
initial packet number were carried by the RFC. Rectransmission of the RFC and the OPN
provides rcliability in the face of lost packets. If the RFC is lost, it will be retransmitted. If the
STS is lost, the OPN will be retransmitted. If the OPN is lost, thc RFC will be retransmitted
superfluously and the OPN will be retransmitted since no STS will be sent.

The exchange of an OPN and an STS tells each side of the conncction that the other side
believes the connection is open; .once this has happened data may begin to flow through the
connection. The user process may begin transmitting data when it sees the OPN. The server
process may begin transmitting data when it sces the STS. These rules cnsure that data packets
cannot arrive at a receiver before it knows and agrees that the connection is open. If data packets
did arrive before then, the receiver would reject them with a 1.OS (sce below), belicving them to
be a violation of protocol, and this would destroy the connection before it was ever fully
cstablished.

Once data packets begin to flow, they arc subject to the flow and ecrror control protocol
described in section 3.8, page 17. Thus a stream connection provides the desired reliable,
bidirectional data stream.

A refusal is initiated by an RFC in the same way, but the server returns CLS rather than
OPN. The data field of the CLS contains the reason for refusal to connect.

A forwarded connection is initiated by an RFC in the same way, but the server returns a
FWD, telling the user another place to look for the desired service.

A simple transaction is initiated by an RFC from user to server, and completed by an ANS
from server to user. Since a full conncction is not established and the reliable-transmission
mechanism of connections is not used, the user process cannot be sure how many copies of the
RIFC the server saw, and the server process cannot be sure that its answer got back to the user.
This means that simple transactions should not be used for applications where it is important to
know whether the transaction was really completed, nor for applications in which repeating the

ML:LSBDOC; AMBER 116 ' ‘ 31-MAR-82

. Chaosnct ‘ 23 Status

same query might produce a different answer. Simple transactions are a simple cfficient
mechanism for applications such as cxtracting a small picce of information (c.g. the time of day)
from a central data-base;

4.2 Stalus

7 STS Status

STS is an uncontrolled packet which is used to convey status information between NCPs. The
Acknowledgement field in the packet header contains an acknowledgement, that ic, the packet
number of the last packet given to the receiving user process. ‘The first 16-bit byte in the data
ficld contains a receipt, that is, a packet number such that all controlled packets up to and
including that onc have been successfully received by the NCP. The second 16-bit byte in the
data ficld contains. the window size for packets sent in the opposite direction (to the end of the
connection which sent ‘the STS). The byte count is presently always 4. This will change if the
protocol is revised to add additional items to the STS packet.

6 SNS Sense status

SNS is an uncontrolled packet whose sole purpose is to cause the other end of the connection
to send back an STS. 'This is used by the probing mechanism described above (sce page 18).

11 LOS Lossage

LOS is an uncontrolled packet which is used by one NCP to inform another of an error. The
data ficld contains a character-string explanation of the problem. The source and destination
addresses and indices arc simply the destination and source addresscs and indices, respectively, of
the erroncous packet, and do not nccessarily correspond to a conncction. When an NCP reccives
a LOS whosc destination corresponds to an existent connection and whose source corresponds to
the supposed other cnd of that conncction, it breaks the connection and makes the data field of
the 1.OS available to the user as an ecrror message. Other LOS’s, that don’t correspond to
connections, are simply ignored.

- LOS is sent in responsc to situations such as: arrival of a data packet or an STS for a
connection that does not exist or is not open, arrival of a packet from the wrong source for its
“destination, arrival of a packet containing an undefined opcode or too large a byte count, ete.

LOS’s are given to the user process so that it may read the error message.

No LOS is given in response to an OPN to a connection not in the RFC-Sent state, nor in
response to a SNS to a connection not in the Open state, nor in response to a LOS to a non-
existent or broken connection, These rulcs are important to make the protocols work without
timing errors. An OPN or a SNS to a non-existent connection elicits a LOS.

ML:LSBDOC;AMBER 116 ' . E . 31-MAR-82

Chaosnet 24 Data

4.3 Data

200-277 DAT 8-bit Data

Opcodes 200 through 277 (octal) are controlled packets with user data in 8-bit bytes in the
data ficld. The NCP treats all 64 of these opcodes identically; some higher-level protocols use the
opcodes for their own purposes. The standard default opcode is 200.

300-377 DAT 16-bit Data

Opbodcs 300 through 377 (octal) are controlled packets with user data in 16-bit bytes in the
data ficld. The NCP treats all 64 of these opcodes identically; some higher-level protocols use the
opcodes for their own purposes. The standard default opcode for 16-bit data is 300.

15 UNC Uncontrolled Data

This is an uncontrolled packet with user data in 8-bit bytes in the data ficld. It cxists so that
uscr-level programs may bypass the flow-control mechanism of Chaosnet protocol. Note that the
NCP is frec to discard thesc packets at any time, since they are uncontrolled. Since UNC’s are
not subject to flow control, discarding may be necessary to avoid running out. of buffers. A -
conncction may not -have more input packets qucued awaiting the attention of the user program
than the window size of the conncction, except that you are always allowed to have one UNC
packet qucued. If no normal data packets are in use, up to one more UNC packet than the
window size may be queued.

UNC packets are also used by the standard protocol for cncapsulating packets of forcign
protocols for transmission through Chaosnet (sce chapter 6, page 35).

4.4 End-of-Data

14 EQF End of File

EOF is a controlled packet which serves as a "logical end of data” mark in the packet stream.
When the user program is ignoring packets and treating a Chaosnet connection as a conventional
byte-streamt [/0 device, the NCP uses the BEOF packet to convey the notion of conventional end-
of-file from one end of the conncction to the other. When the user program is working at the
packet level, it may transmit and receive EOF’s.

It is illegal to put data in an EOF packet; in other words, the byte count should always be
zero. Most Chaosnct implementations will simply ignore any data that is present in an EOF.

EOF packets arc used in the following protocol which is the recommended way to reliably
determine that all data have been transferred before closing a connection (in applications where
that is an important consideration).

ML:LSBDOC;AMBIER 116 3I-MAR-82

Chaosnct . 25 Broadcast

The important issue is that ncither side may send a CLS until both sides are surc that all the
data have been transmitted.. After sending all the data it is going to send, including an EOF
packet to mark the end, the scnding process waits for all packets to be acknowledged. This
ensures that the recciver has seen all the data and knows that no more data arc to come. The
sending process then closes the connection. When the recciving process sees an EOF, it knows
that there are no more data. It does not close the connection until it sces the sender close it, or
until a brief timcout clapses. The timeout is to provide for the case where the sender’s CLS gets
lost in the network (CLS cannot be retransmitted). The timeout is long enough (a few scconds)
to make it unlikely that the sender will not have scen the acknowlcdgcment of the EOF by the
time the timcout is over.

To use this protocol in a bidircctional fashion, where both partics to the conncction are
sending data simultancously, it is neccessary to use an asymmetrical protocol. Arbitrarily call one
party the user and the other the server. - 'The protocol is that after sending all its data, cach party
sends an EOF and waits for it to be acknowledged. The server, having scen its EOF
acknowledged, sends a sccond EOF. The user, having scen its EOF acknowledged, looks for a
second EOF and then sends a CLS and goes away. The server goes away when it sccs the user’s
CLS, or after a bricf timeout has clapsed. - This asymmetrical protocol guarantees that cach side
gets a chance to know that both sides agree that all the data have been transferred. The first
CLS will only be sent after both sides have waited for their (first) EOF to be acknowledged.

4.5 Broadcast

Chaosnet includes a generalized broadcast facility, intended to satisfy needs such as:
- Locating scrvices when it is not known what host they are on.

- Internal communications of other protocols using Chaosnct as a transmission medium, such as
routing in their own address spaces.

- Rcloading and remote debugging of Chaosnet bridge computers.

- - Expcriments with radically different protocols.

16 BRD Broadcast

A BRD packet works much like an RFC packet; it contains the namé of a server to be
communicated with, and possibly some arguments. Unlike an RFC, which is delivered to a
particular host, a BRD is broadcast to all hosts. Only hosts which understand the scrvice it is
looking for will respond. The response can be anything which is valid as a response to RFC.
Typically BRIDD will be used in a simple-transaction mode, and the response will be an ANS
packet. Actually it can be any number of ANS packets since multiple hosts may respond. BRD
can also be used to open a full byte-stream connection to a server whose host is not known., In
this case the response will be an OPN packet; only the first OPN succeeds in opening a
connection. CLS is also a valid response, but only as a true negative response; BRD’s for
unrecognized or unavailable services should be ignored and no CLS should be sent, since some
other host might be able to provide the service.

ML:LSBDOC;AMBER 116 : 31-MAR-82

Chaosnct o 26 ‘ Broadcast

The TIME and STATUS protocols (sce chapter 5, page 29) will woik through BRD packets
as well as RFC packets. 1 don’t think there arc any other standard protocols that need to be able
to work with BRD packets.

The data field of a BRD contains a subnet bit map followed by a contact name and possible
arguments. The subnet bit map has a "1" for cach subnet on which this packet is to be broadcast
to all hosts; these bits arc turned off as the packets flow through the network, to avoid loops.
The sender initializes the bit map with 1's for whichever subnets he desires (often all of them).

In the packet header, the destination host and index are 0. The source host and index are
who to send the reply (ANS or OPN) to. The acknowledgement field contains the number of
bytes in the bit map (this would normally be 32, but may be changed in the future). The
number of bytes in the bit map is required to be a multiple of 4. Bits in the bitmap are
numbered from right to left within a byte and from carlier to later bytes; thus the bit for subnet
1 is the bit with weight 2 in the first byte of the data ficld., Bits that lic outside of the declared
length of the bit map are considered to be zero; thus the BRD is not transmitted to those
subnets.

After the subnet bit map there is a contact name and arguments, cxactly as in an RFC.
Operating systems should treat incoming BRD packets exactly like RFC, even to the extent that a
contact name of STATUS must retricve the host’s network throughput and crror statistics. BRD
packets will never be refuscd with a "CLS", however; broadcast requests to nonexistent servers
should simply be ignored, and no CLS reply should be sent. Most operating systems will simplify
incoming BRD handling for themsclves and their users by reformatting incoming BRD packets to
look like RFC’s; dcleting the subnet bit-map from the data field and decrcasing the byte count.
For consistency when this is done the bit map length (in the acknowledgement ficld) should be
set to zero. The packet opcode will remain BRD (rather than RFC).

Operating systems should handle outgoing BRI packets as follows. When a user process
transmits a BRD packet over a closed connection, the connection enters a special "Broadcast Sent”
state. In this state, thc user process is allowed to transmit additional BRD packets. All incoming
packets other than OPN’s should be made available for the user process to read, until the allowed
buffering capacity is exceeded; further incoming packets are then simply discarded. These
incoming packets would normally be expected to consist of ANS, FWD, and CLS packets only.
If an OPN is reccived, and there arc no qucued input packets, a regular byte-strecam conncction
is opened. Any OPN’s from other hosts elicit a LOS reply as usual, as do any ANS's, CLS’s,

“etc. received at this point. '

Operating systems should not retransmit BRD packets,. but should leave this up to the user
program, since only it knows when it has received enough answers (or a satisfactory answer).

BRD packets can be delivered to a host in multiple copics when there arc multiple paths
through the nctwork between the sender and that host. The bit map only serves to cut down
looping more than the forwarding-count would, and to allow the sender to broadcast sclectively to
portions of the nect, but cannot climinate multiple copies. The usual mechanisms for discarding
duplicated RFC’s will also cause most duplicated BRD’s to be discarded.

ML:LSBDOC;AMBER 116 : . : | 31-MAR-82

Chaosnet 27 Tow-lcvel

BRI packets put a noticcable load on every host on the network, so they should be used
judiciously. "Bcacons" that send a BRD every 30 scconds all day long should not be used.

4.6 Low-level

13 MNT Maintenance

MNT is a special packet type reserved for the use of network maintenance programs. Normal
NCPs should simply discard any MNT packets they receive. MNT packets are an escape
mechanism to allow special programs to send packets that are guarantced not to get confused with
normal packets. MNT packets arc forwarded by bridges although wusually one would not be
depending on this.

10 RUT Routing Information

RUT is a special packet type broadcast by bridges to inform other nodes of the bridge’s
ability to forward packets between subnets. The source address is the network address of the
bridge on. the subnet on which the RUT was broadcast. The destination address is zero. The
byte count is a multiple of 4, and the data ficld contains a scrics of pairs of 16-bit bytes: a
subnet number and the "cost” of getting to that subnet via this bridge. The packet number and
acknowledgement ficlds are not used and should contain zero. See scction 3.7, page 14 for the
details. :

4.7 Connection States

A user process gets to Chaosnet by means of a capability or channcl (dependent on the host
operating system) which corresponds to one end of a connection. Associated with this channel are
a number of buffers containing controlled packets output by the user and not yet receipted, and
data packets rcceived from the network but not yet read by the user; some of these incoming
packets are in-order by packet number and hence may be rcad by the user, while others are out
of order and cannot be rcad until packets carlier in the strcam have been received. Certain
control packets are also given to the user as if they were data packets. These arc RIFC, ANS,
CLS, LOS, EOF, and UNC. EOF is the only type that can cver be out-of-order.

Also associated with the channel is a state, usually called the connection state. Full
understanding of these states depends on the descriptions of packet-types above. The state can be
one of:

Open The connection cxists and data may be transferred.

Closed The channel does not have an associated connection. FEither it never had one or it
has received or transmitted a CL.S packet, which destroyed the connection.

Listening The channel does not have an associated connection, but it has a contact name
(usually contained in a LSN packet) for which it is listening.

RIC Received A Listening channel enters this state when an RFC arrives. [t can become Open
if the user process accepts the request.

ML:L.SBDOC;AMBER 116 31-MAR-82

Chaosnet 28 Conncction States

RIC Sent The user has transmitted an RFC. The state will change to Open or Closed when
the reply to the RFC comes back.

Broadcast Sent 'The user has transmitted a BRD. In this state, the user process is allowed to
transmit additional BRI) packets. All incoming packets other than OPN’s are
made available for the user process to read, until the allowed buffering capacity is
exceeded; further incoming packets are then simply "discarded. These incoming
packets would normally be expected to consist of ANS, FWD, and CLS packets
only. If an OPN is rcceived, and there arc no qucued input packets, a regular
byte-strcam connection is opened (the conncction enters the Open state). Any
OPN’s from other hosts elicit a LOS reply as usual, as do any ANS’s, CLS’s, etc.
reccived at this point.

Lost The connection has been broken by receiving a 1.OS packet.

Incomplete Transmission
The connection has been broken because the other end has ceased to transmit and
to respond to SNS. Fither the network or the forcign host is down. (This can
also happen if the local host goes down for a while and then is revived, if its
clock runs in the meantime.)

Foreign The channel is talking some foreign protocol, whose packets are cncapsulated in
UNC packets. As far as Chaosnet is concerncd there is no conncction. Sce
chapter 6, page 35 for the details.

ML:LSBDOC;AMBER 116 ' 31-MAR-82

Chaosnct _ 29 Higher-1.cvel Protocols

‘5. Higher-Level Protocols

'This chapter bricfly documents some of the higher-level protocols of the most general interest.
There are quite a few other protecols which are too specialized to mention here. All protocols
other than the STATUS protocol are optional and arc only implemented by those hosts that need
them. All hosts are required to implement the STATUS protocol since it is used for network
tnaintenance.

5.1 Status

All network nodes, even bridges, arc required to answer RFC's with contact name STATUS,
returning an ANS packet in a simple transaction, This protocol is primarily used for nctwork
maintcnance. ‘The answer to a STATUS request should be gencrated by the Network Control
Program, rather than by starting up a scrver process, in order o provide rapid response.

The STATUS protocol is used to determine whether a host is up, to determine whether an
operable path through the network cxists between two hosts, to monitor network error statistics,
and to debug new Network Control Programs and new Chaosnet hardware. 'The hostat function
on the Lisp machine, and thc Hostat command of the CHATST program on ITS are user cnds
for this protocol. ‘

The first 32 bytes of the ANS contain the name of the node, padded on the right with zero
bytes. The rest of the packet contains blocks of information expressed in 16-bit and 32-bit words,
Tow byte first (pdpll/Lisp machine style). The low-order half of a 32-bit word comes first. Since
ANS packets contain 8-bit data (not 16-bit), machines such as pdplOs which storc numbecrs high
byte first will have to shufflc the bytes when using this proiocol. 'The first 16-bit word in a block
is its identification. The sccond 16-bit word is the number of 16-bit words to follow. The
remaining words in the block depend on the identification.

This is the only block type currently defined. All items are optional, according to the count
ficld, and extra items not defined here may be present and should be ignored. Note that items
after the first two are 32-bit words.

~ word 0 A number between 400 and 777 octal. This is 400 plus a subnet number. This
block contains information on this host’s direct connection to that subnet.
word 1 The number of 16-bit words to follow, usually 16.
words 2-3 The number of packets received from this subnet.
Words 4-5 The number of packets. transmitted to this subnet.
words 6-7 The number of transmissions to this subnet aborted by collisions or because the

recciver was busy.

words §-9 The number of incoming packets from this subnet lost because the host had not
: yet read a previous packet out of the interface and conscquently the interface
could not capture the packet.

words 10-11 The number of incoming packets from this subnet witl: CRC crrors. These were
cither transmitted wrong or damaged in transmission.

ML:LSBDOC;AMBER 116 31-MAR-82

»

Chaosnct 30 Pulsar

words 12-13 The number of incoming packets from this subnet which had no CRC error when
* received, but did have an crror after being read out of the packet buffer. This
error indicates either a hardware problem with the packet buffer or an incorrect

packet length. -

words 14-15 The number of incoming packets from this subnet which were rcjected due to
incorrect length (typically not a multiple of 16 bits). '

words 16-17 The number of incoming packets from this subnet rcjected for other reasons (e.g.
too short to contain a header, garbage byte-count, forwarded too many times.)

If the identification is a number between 0 and 377 octal, this is an obsolete format of block.
The identification is a subnet number and the counts are as above cxcept that they are only 16
bits instead of 32, and conscquently may overflow. This format should no longer be sent by any
hosts.

Identification numbers of 1000 octal and up are reserved for future use.

5.2 Pulsar

For network maintenance purposes, certain network nodes support a simple transaction with
contact name PULSAR, which controls a "pulsar” feature. This feature periodically transmits a
short packet which can be used to test and adjust cable transceivers. The packet consists of the
three header words, a zero word, and a word of alternating oncs and zeros. It is addressed to
host 177777 which is guarantecd not to exist.

The returned ANS contains a single character, which is a digit. A 0 means that the pulsar is
turned off. Any other digit indicates the number of sixticths of a second between pulscs. Scnding
an RFC with a digit as an argument sets the state of the pulsar to that digit, and returns an ANS
containing the new state. Pulsars should be off by default, and should only be turned on when
debugging the network. The waste of cable bandwidth and machine resources is negligible except
in extremecly large networks, since pulsar packets are so short, but when debugging or making
measurements on cables using pulsar packets it is important to know where the packets are
coming from.

Bridge nodes which implement the PULSAR protocol and possess more than one network
“interface should should have a single pulsar which transmits on all network interfaces, rather than
bothering to provide a more complex protocol by which pulsars on the individual interfaces could
be turned on and off,

ML:LSBDOC;AMBER 116 ' 31-MAR-82

Chaosnet _ ' 31 Telnet and Supdup

5.3 Telnet and Supdup

The Telnet and Supdup protocols of the Arpanct [TELNET] [SUPDUYP] exist in identical form
in Chaosnet. These protocols allow access to a computer system as an interactive terminal from
another network node.

The contact names are TELNET and SUPDUP. The direct borrowing of the Teloet and
Supdup protocols was cased by their use of 8-bit byte strecams and only a single connection. Note
that these protocols definc their own character sets, which differ from each other and from the
Chaosnet standard character set.

Chaosnet contains no counterpart of the INR/INS attention-getting feature of the Arpanet.
The Telnet protocol sends a packet with opcode 201 in place of the INS signal. This is a
controlled packet and hence docs not provide the "out of band" feature of the Arpanct INS,
however it is satisfactory for the Telnet "interrupt process” and “discard output” opecrations on the
kinds of hosts attached to Chaosnet.

5.4 File Access

The FILE protocol is primarily used by Lisp machines to access files on network file servers.
ITS and TOPS-20 arc cquipped to act as file servers. A user cnd for the file protocol also exists
for TOPS-20 and is used for general-purpose file transfer. For complete documentation on the file
protocol, sce [FILE]. The Arpanet filc transfer protocols have not been implemented on the
Chaosnet (except through the Arpanct gateway described below).

5.5 Mail

The MAIL protocol is used to transmit inter-user messages through the Chaosnet. The
Arpanet mail protocol was not used because of its complexity and poor state of documcntation.
This simple protocol is by no means the last word in mail protocols; however, it is adequate for
the mail systcms we presently possess.

The sender of mail connects to contact name MAIL and establishes a strcam connection. It
then sends the names of all the recipients to which the mail is to be sent at (or via) the server
host. The names are sent one to a line and terminated by a blank linc (two carriage returns in a
row). The Lisp Machine character sct is used. A reply (see below) is immediately returned for
each rccipient. A recipient is typically just the name of a user, but it can be a uscr-atsign-host
sequence or anything else acceptable to the mail system on the server machine. After sending the
recipients, the sender sends the text of the message, terminated by an EOF. After the mail has
been successfully swallowed, a reply is sent. After the sender of mail has read the reply, both
. sides close the connection.

In the MAIL protocol, a reply is a signal from the server to the user (or sender) indicating
success or failure. The first character of a reply is a plus sign for success, a minus sign for
permanent failure (e.g. no such user exists), or a percent sign for temporary failure (c.g. unable to
reccive message because disk is full). The rest of a reply is a human-readable character string
explaining the situation, followed by a carriage return.

ML:LSBDOC;AMBER 116 ' 31-MAR-82

Chaosnet _ ' 32 Send

The message text transmitted through the mail protocol normally contains a header formatted
in the Arpanct standard fashion. [RIFC733]

5.6 Send

The SEND protocol is used to transmit an interactive message (requiring immediate attention)
between users. The sender connects to contact name SEND at the machire to which the recipient
is logged in. The remainder of the RFC packet contains the name of the person being sent to.
A strecam connection is opened and the message is transmitted, followed by an EOF. Both sides
close after following the end-of-data protocol described in section 4.4, page 24. The fact that the
RIFC was responded to affirmatively indicates that the rccipient is in fact present and accepting
messages. The message text should begin with a suitable header, naming the user that sent the
message. The standard for such headers, not currently adhered to by all hosts, is one line
formatted as in the following example:

Moon@MIT-MC 6/15/81 02:20:17
Automatic reply to the sender can be implemented by scarching for the first "@" and using the
SEND protocol to the host following the "@" with the argument preceding it.

5.7 Name

The Name/Finger. protocol of the Arpanct [IFINGER] exists in identical form on the Chaosnet, .
Both Lisp machines and timesharing machines support this protocol and provide a display of the
uscr(s) currently logged in to them.

The contact name is NAME which can be followed by a space and a string of arguments like
the "command line" of the Arpanct protocol. A strcam connection is established and the "finger”
display is output in Lisp Machine character sct, followed by an EOF,

Lisp Machines also support the FINGER protocol, a simple-transaction version of the NAME
protocol. An RFC with contact name FINGER is transmitted and the response is an ANS
containing the following items of information separated by carriage rcturns: the logged-in user 1D,
the location of the terminal, the idle time in minutes or hours-colon-minutes, the user’s full
name, and the user’s group affiliation.

5.8' Time

The Time protocol of the Arpanet [TIME] exists on Chaosnet as a simple transaction. An
RFC to contact namc TIME cvokes an ANS containing the number of seconds since midnight
Greenwich Mcan Time, Jan 1, 1900 as a 32-bit number in four 8-bit bytcs, least-significant byte
first. Some computers—Lisp machines, for cxample—which don’t have hardware calendar-clocks
use this protocol to find out the date and time when they first come up.

ML:LSBDOC;AMBER 116 ‘ . ' : . 31-MAR-82

Chaosnet 33 , Arpanct Gateway

5.9 Arpanet Gateway

This protocol allows a Chaosnet host to access almost any service on the Arpanet. The
gateway scrver runs on cach ITS host that is connected to both networks. It creates an Arpanct
connection and a Chaosnet connection and forwards data bytes from one to the other. It also
" provides for. a onc-way auxiliary conncction, used for the data connection of the Arpanct File
Transfer Protocol.

The RFC packet contains a contact name of ARPA, a space, the namc of the Arpanct host to
be connected to, optionally followed by a space and the contact-socket number in octal, which
defaults to 1 if omitted. - The Arpanct Initial Connection Protocol is used to cstablish a bi-
dircctional 8-bit conncction.

If a data packet with opcode 201 (octal) is received, an Arpanct INS signal will be
transmitted. Any data bytes in this packet are transmitted normally.

If a data packet with opcode 210 (octal) is rcceived, an auxiliary connection on cach network
is opened. The first cight data bytes arc the Chaosnet contact name for the auxiliary connection;
the user should send an RFFC with this name to the server. The next four data bytes are the
Arpanct socket number to be connected to, in the wrong order, most-significant byte first. The
byte-size of the auxiliary connection is 8 bits.

The normal closing of an Arpanct connection corresponds to an EOF packet. C]osing' duc to
an crror, such as Host Dcad, corresponds to a CLS packet.

5.10 Host Table

The HOSTAB protocol may be used to access tables of host addresses on other networks, such
as the Arpanct. Servers for this protocol currently exist for Tenex and TOPS-20.

The user connects to contact name HOSTAB, undertakes a number of transactions, then closes
the connection. Fach transaction is initiated by the user transmitting a host name followed by a
carriage return. The server responds with information about that host, terminated with an EOF,
and is then ready for another transaction. The server’s response consists of a number of attributes
of the host. Fach attribute consists of an identifying name, a space character, the value of the
attribute, and a carriage return. Values may be strings (free of carriage returns and not
surrounded by double-quotes) or octal numbers. Attributc names and most values are in upper
case. There can be more than one attribute with the same name; for example, a host may have
more than one name or more than one network address.

The standard attribute names defined now are as follows. Note that more are likely to be
added in the future.

ERROR The value is an error message. The only error one might expect to get is "no
such host". N .
NAME _ The value is a name of the host. ‘There may be morc than one NAME aitribute;

the first one is always the official name, and any additional names are nicknames,

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet 34 Dover

MACHINE-TYPE v
The value is the type of machine, such as LISPM, PDP10, etc.

SYSTEM-TYPE The value is the type of software running on the machine, such as LISPM, ITS,

ctc.

ARPA The value is an address of the host on the Arpanct, in the form host/imp. The
two nuinbers are decimal.

CHAQS - The value is an address of the host on Chaosnet, as an octal number.

DIAL The value is an address of the host on Dialnet, as a telephone number.

LCS The value is an address of the host on the L.CSnet, as two octal numbers

separated by a slash.,

Su The value is an address of the host on the SUnet, in the form net# host. The
two numbers are octal.

5.11 Dover

A press file may be sent to the Dover printer by connecting to contact name DOVER at host
Al-CHAOS-11. This host provides a protocol translation scrvice which translates from Chaosnet
strecam protocol to the EFTP protocol spoken by the Dover printer. Only onc file at a time can
be sent -to the Dover, so an attempt to use this service may be refused by a CLS packet
containing the string "BUSY". Once the conncction has been cstablished, the press file is
transmitted as a scquence of 8-bit bytes in data packets (opcode 200). It is necessary to provide
packets rapidly cnough to kecp the Dover’s program (Spruce) from timing out; a packet cvery
five seconds suffices. Of course, packets are normally transmitted much more rapidly.

~ Once the file has been transmitted, an EOF packet must be sent. The transmitter must wait
for that EOF to be acknowledged, send a second one, then close the connection. The two EOF’s
arc necessary to provide the proper conncction-closing sequence for the EFTP protocol. Once the
‘press file has been transmitted to the Dover in this way and stored on the Dover’s local disk, it
will be. processed and prepared for printing, and then printed.

If an crror message is retutncd by the Dover while the press file is being transmitted, it will
be reported back through the Chaosnet as a LOS containing the text of the crror message. - Such
errors are fairly common; the sender of the press file should be prepared to retry the operation a
few times.

Most programs that send press files to the Dover first wait for the Dover to be idle, using the
Foreign Protocol mechanism of Chaosnet to check the status of the Dover. This is optional, but
is courtcous to other users since it prevents printing from being held up while additional files are
sent to the Dover and quecued on its local disk. '

It would be possible to send to a press file to the Dover using its EFTP protocol through the
Forcign Protocol mechanism, rather than using the Al-CHAOS-11 gateway scrvice. This is not
usually done because EFTP, which requires a handshake for every packet, tends to be very slow
on a timesharing system. ‘

ML:I.SBDOC;AMBER 116 | ' | 31-MAR-82

Chaosnet , 35 : Using Forcign Protocols in Chaosnet

6. Using Foreign Protocols in Chaosnet

As scen above, forcign protocols which are based on the idca of a bidirectional (or
unidirectional) strcam of 8-bit byics can simply be adopted wholesale into Chaosnet, using a
Chaosnet _ stream connection instcad “of whatever stream protocol the protocol was originally
designed for. This was done with the Arpanct Telnet protocol, for example.

When using such protocols between a Chaosnet process and a process on a forcign network, a
protocol-translating gateway stands at the boundary between the two networks and has a
connection on both networks. Bytes reccived from onc connection are transmitted out the other.
If the protocol uscs any features besides a simple stream of bytes, for instance specic! out-of-band
signals, these arc translatcd appropriately by the gateway. The connection is initially sct up by
the user end conneccting explicitly to the protocol-translating gateway and demanding of it a
certain service from a certain host on the other network; the gateway then opens the appropriate
pair of connections. For an cxample of this, refer to the Arpanct gatcway (sce section 5.9, page
33).

However, there are many packet-oriented protocols in the world and sometimes it is desirable
to access these protocols at the packet level rather than the connection level, and to transport the
packets of these protocols through Chaosnet links without using a Chaosnct conncction. For
example, there arc gateways attached to Chaosnet which provide conncctions to other nctworks
that use PUP and Internet as their packet protocols. User processes in Chaosnet hosts may talk to
these other networks in those networks’ own protocols by using the foreign-protocol protocol of
Chaosnet. '

A foreign packet is transmitted through Chaosnet by storing it in the data field of an UNC
packet. The forcign packet is regarded as being composed of 8-bit bytes. The source and
destination addresses of the UNC packet arc used in the usual fashion to control the delivery of
the packet within Chaosnet. The packet number and acknowledgement ficlds of the packet header
are not used for their normal purposes, since this packet is not associated with a Chaosnet stream
connection. By convention, the acknowledgement ficld of the packet contains a protocol number.
The number 100000 octal mecans Internet and the number 100001 octal means PUP. Other
numbers will be assigned as nceded. The packet number ficld of the packet can be used for any

purpose.

If a user process transmits an UNC packet through a Chaosnet channcl which is in the Closed
state (see section 4.7, page 27), the channel gocs into the Foreign state and the NCP assumes that
the user is not talking normal Chaosnet protocol, but is using Chaosnet to transport packets of
some other protocol. The NCP fills in the source address and index in these packets, but believes
whatever destination address and index are placed in the packet by the user. The packet number
and acknowledgement fields of thé UNC packets are not touched by the NCP. Any incoming
UNC packets addressed to the user’s index on this host will be given to the user, regardless of
their source address/index; it is up to the user program to filter out any unwanted packets. The
NCP should also provide a way for one user to reccive any unclaimed incoming UNC packets, so
that rendezvous subprotocols of foreign protocols' may be simulated.

ML:LSBDOC; AMBER 116 31-MAR-82

Chaosnet 36 Using Forcign Protocols in Chaosnct

When a packet-translating gateway to a forcign network receives an UNC packet with the
appropriate protocol number, it extracts the foreign packet from the data field and fires it into the
* forcign network. When it reccives packets from the foreign nctwork, it maps the destination
address of the packet into a Chaosnet address and index in some suitable fashion, encapsulates
the packet in an UNC, and launches it into Chaosnet. :

For PUP the address mapping is straightforward, since PUP and Chaosnct use similar
addressing techniques [ETHERNET]. The host address spaces are the same. The Chaosnet index
maps dircctly into the low-order 16 bits of the PUP port number, and the high-order 16 bits are
zero. When a PUP is encapsulated in a Chaosnet packet, its PUP header duplicates the addresses
in the Chaosnet header. When a PUP is reccived by a PUP/Chaosnet gateway, a Chaosnet
header can casily be constructed from the PUP hcader. The AI-CHAOS-11 is attached to the
MIT Chaosnet and the MIT Ethernet and provides a PUP/Chaosnct gateway. It advertiscs to
cach nctwork its ability to routc packets to host addresses in the other network, using that
network’s routing protocols, When it receives a packet from one network that is destined for the
other, it docs the appropriate encapsulation or de-cncapsulation and sends the packet on its way.
AT-CHAOS-11 also acts as a bridge between several Chaosnet subnets and provides a protocol-
translating gateway for sending Press files to the Dover printer (a protocol-translating gateway is
necessary for this application because the printer's native protocol, which could be used through
the foreign-protocol protocol, cannot be implemented cfficiently under a timesharing system).

In the case of Internet, only protocols built on the idea of ports can be straightforwardly
supported without a table of conncctions in the gateway. The Internct address space includes the
Chaosnct host address space as a subsct but does not provide any address breakdown within a
host unless ports arc used. However, it appears that most protocols are built on a protocol that
uscs ports, such as the User Datagram Protocol [UDP] or the Transmission Control Protocol
[TCP]. '

In the case of forcign protocols other than PUP, where the addressing structure is not
identical to- Chaosnet, a program must somehow know the Chaosnet address of a packet-
translating gateway to the foreign network. By sending UNC packets to this gatcway, a user
program can initiate connections to processes on that other network without requiring his local
NCP (nor any bridges involved in routing the packets) to know anything about the protocol he is
using. If the inter-network gateway translates rendezvous protocols appropriately, conncctions may
be initiated in the reverse direction also—from a user process on the forcign nctwork to a server
for the foreign protocol that resides on a Chaosnet host.

The foreign-protocol protocol may also be used between two user processes on Chaosnet, with
no forcign network involved, if they simply wish to spcak a different protocol from Chaosnct.
They are on their own for a rendezvous mechanism, however, unless they use a Chaosnet simple
transaction for rendezvous or othcrw1se have some way of conveying their addresses and index
numbers to cach other,

When forcign packets. are too large to fit in the data field of a Chaosnet packet (more than
488 bytes), the user program and the packet-translating gateway must agree on a technique for
dividing packets into fragments and reasscmbling them, unless the forcign protocol itsclf provides
for this, as Internet docs. The packet-number ficld in an UNC packet is available for use by
such a technique, since UNC packets are not normally numbered. This is not a problem with
PUP, since it prov1dcs a protocol by which parties to a connection and gatcways may complain

ML:LSBDOC:AMBER 116 B 31-MAR-82

Chaosnet 37 _ Using Forcign Protocols in Chaosnct

about overly-large packets and specify the maximum packet size to be used.

UNC packets not associated with a conncction are useful for other things besides encapsulating
forcign protocols. Any application which wants to usc Chaosnct as simply a packet transmission
medium, essentially the raw hardware, should use UNC packets so that its packets do not
interfere with standard packets and so that the standard routing mechanisms may.be used. TFor
example, the MIT Architecture Machine uses UNC packets to communicate with non-strcam-
oriented 1/0 devices such as graphic tablets. Here Chaosnct is being used as an 170 bus which
may be attached to more than onc computer. Numbers between 140000 and 177777 octal in the
acknowledgement ficld of an UNC - packet arc reserved for such applications. Note that this
number is not part of the protocol; it is simply a hint about what a packet is being used for.
Normally no program that is not specifically supposed to deal with such packets would cver
reccive one.

ML:LSBDOC;AMBER 116 4 v : 31-MAR-82

Chaosnet . 38 Hardware Programming Documentation

7. Hardware Programming Documentation

This section describes the Unibus version of the Chaosnet interface, which attaches to pdplls
and Lisp Machines. The interface contains one buffer which holds a received packet and a sccond
buffer which holds a packet to be transmitted. Packets are moved between these buffers and the
computer under program control. Direct memory access (DMA) is not used; the small gain in
performance was not thought to be worth the extra hardware complexity. The usual performance
penalty of programmed 170 is not incurred since the packet buffers can transfer data at the full
speed of the computer and ncither busy waiting nor multiple interrupts are required.

To transmit a packet, successive 16-bit words of the packet are written into the outgoing
packet buffer,. First the cight 16-bit words of the hcader should be written, then exactly the
number of 16-bit data words implied by the byte count in the header. If the byte count is odd,
the last 16-bit word will contain the last byte in its low half and a garbage padding byte in its
high half. After writing the data words, the last 16-bit word to be written is the cable address of
the destination of the packet, or 0 to broadcast it. The hardware is then told to initiate
transmission. It waits until the cable is not busy and this nodc’s turn to transmit arrives, then
shifts the packet out onto thc cable. At the completion of transmission transmit-done is set and
the computer is interrupted. If transmission is aborted by a collision, transmit-donc and transmit-
abort are sct and the computer is interrupted. As the packet is written into the outgoing packet
buffer, a 16-bit cyclic redundancy checksum is computed by the hardware. This checksum is
transmitted with the packet and checked by the receiver.

To receive a packet, the clear-receiver bit is asserted by the program. The next packet on the
cable which is addrcssed to this node, or is broadcast, will be stored into the incoming packet
buffer. After the packet has been stored, the computer is interrupted. The packet buffer will
then not be changed until the next clear-receiver operation is performed, giving the computer a
chance to read out the packet. If a packet appears on the cable addressed to this node while the
incoming packet buffer is busy, a collision is simulated so as to abort the transmission. As a
packet is stored into. the incoming packet buffer, the 16-bit cyclic rcdundancy checksum is
checked, and it is checked again as the packet is read out of the packet buffer. This provides full
checking for errors in the network and in the packet buffers.

The standard interrupt-vector address for the Chaosnet interface is 270. The standard interrupt
priority level is 5. The standard Unibus address is 764140. These are the device registers:

764140 Command/Status Register
This register contains a number of bits, in the usual pdpll style. All read/writc bits are
initialized to zero on power-up. Identified by their masks, these are:

1 Timer Interrupt Enable (rcad/write). Enables interrupts from the interval timer
present in some versions of the interface (not described here).

2 Loop Back (rcad/write). If this bit is 1, the cable and transceiver are not used
and the interface is looped back to itself. This is for maintenance.

4 Spy (read/writc). If this bit is 1, the interface will receive all packets regardless
- of their destination. This is for maintenance and network monitoring.

ML:LSBDOC;AMBER 116 : 31-MAR-82

Chaosnct 39 . Hardware Programming Documentation

764142

764142

764144

764146

764152

10 Clear Receiver (write only). Writing a 1 into this bit clears Receive Done and
enables the receiver to receive another packet.

20 Rececive Interrupt Enable (read/writc). If Reccive Donc and Receive Interrupt
Enable arc both 1, the computer is interrupted.

40 Transmit Interrupt Enable (rcad/write). If Transmit Done and Transmit
Interrupt Enable are both 1, the computer is interrupted.

100 Transmit Abort (read only). This bit is 1 if the last transmission was aborted,
by a collision or because the receiver was busy.

200 Transmit Done (read only). This bit is set to 1 when a transmission is
‘completed or aborted, and cleared to 0 when a word is written into the outgoing
packet buffer.

400 Clear Transmitter (write only). Writing a 1 into this bit stops the transmitter
and scts Transmit Done. 'This is for maintenance.

17000 Lost Count (read only). These 4 bits contain a count of the number of packets
which would have been received - if the incoming packet buffer had not been
busy. Sectting Clear Recciver resets the lost count to 0.

120000 Reset (write only). Writing a 1 into this bit completely resets the interface, just
‘ as at power up and Unibus Initialize. '

40000 CRC FError (read only). If this bit is 1 the rcceiver’s cyclic redundancy
checksum indicates an error. This bit is only valid at two times: when the
incoming packet buffer contains a fresh packet, and when the packet has been
completely read out of the packet buffer.

100000 Reccive Done (read only). A 1 in this bit indicates that the incoming packet
buffer contains a packet.

My Address (read)
Reading this location returns the network address of this interface (which is contained in a
set of DIP switches on the board).

Write Buffer (write) - ,
Writing this location writes a word into the outgoing packet buffer. The last word written
is the destination address.

Read Buffer (read only)
Reading this location reads a word from the incoming packct buffer. The last three words
rcad are the destination address, the source address, and the checksum.

Bit Count (read only)
This location contains the number of bits in the incoming packet bufler, minus one.
After the whole packet has been read out, it will contain 7777 (a 12-bit minus-one).

Start Transmission (read only)
Reading this location initiates transmission of the packet in the outgoing packet buffer.

" The valuc rcad is the network address of this interface. This method for starting

transmission may scem strange, but it makes it casier for the hardware to get the source
address into the packet. :

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnct 40 The ITS Implementation

8. The ITS Implementation

8.1 System Calls

Note that the NETWRK subroutine package, page 45, provides a convenient interface to most
of these system calls for the assembly-language programmer.

8.1.1 Opening 170 Channels

Since ITS 170 Channels are unidirectional, a Chaosnet connection is represented by a pair of
channels, onc for input and one for output. Operations that are not inherently directional, such
as finding out the state of the connection, may be done on cither channel (it makes no
difference).

Unlike every other device, you do not obtain these channcls with the OPEN system call.
Instead a special system call, CHAOSO, is provided. This docs not open a connection; it simply
gives you a pair of channels and a potential connection, in the Closed state, which can be opened
by transmitting a packet (an RIFC for instance) through the output channcl.

CHAOSO takes three arguments: the input channel number, the output channel number, and
_the receive window size. 1f cither channel is currently open it is closed first (just as with OPEN).
CHAOSO rcturns no values. Error 6 (device full) is signalled if the system’s conncction table is
full,

8.1.2 Input and Output

Input and output can be donc on a Chaosnct conncction in terms of cither packets or 8-bit
bytes. 8-bit byte 1/0 is usually done with the SIOT system call; the IOT system call or the 10T
uuo may also be used—the channel behaves as if it had been opened in unit mode. 8-bit byte
output is collected by the system into packets containing the maximum’ allowed number of bytes;
when a packet is full it is transmitted with the standard data opcode (200). Until a full packet’s
worth of bytes have been output nothing will be transmitted unless the FORCE system call is
used. 8-bit input comes from packets with the data opcode (200). If an EOF packet is received,
the standard end-of-file behavior will oceur—IOT will return the EOF character (-1,,3) and SIOT
~will return with a non-zero residual byte count. If some other kind of packet is reccived, an 10C
crror will be signalled (sce below). If PKTIOT (sce below) is used to read out a non-data packet,
strcam input may be continued past it.

Bit 1.4 in the control bits is "don’t hang" mode for both input and output. When SIOT is
done with this bit specified, and no input is available or the output window is full, it will simply
return without transferring the full number of bytes specified. The byte-pointer and byte-count
arguments to SIOT arc updated past the bytes that were transferred. When input 10T is done in
"don’t hang" mode, and no input is available, the EOF character (-1,,3) is returned. Output 10T
should not be done in "don’t hang" mode since it has no way to indicate that it did not transmit
anything. If a non-data packet is received, "don’t hang" mode will behave the same as if there
was no input available.

ML:LSBDOC;AMBER 116 ' . 31-MAR-82

Chaosnct A 41 System Calls

 Before doing 8-bit byte 170, the user program must open a Chaosnct stream connection by
transmitting and receiving the appropriate RFC, LSN, or OPN packets and following the protocol
described on page 21. The NETWRK subroutine package can be useful for this.

Input and output can be done in terms of packets by using the PKTIOT system call. The first
argument is the 170 channel number and the sccond is the address of the packet to be
transmitted or of a 126.-word buffer to contain the packet to be received. No valucs are returned.

Input PKTIOT will return data packets and the following types of control packets: RFC,
OPN, FWD, ANS, CLS, 1.OS, FOF, and UNC. The other types of control packets are for the
NCP’s internal use only. If no input packets arc available, PKTIOT will wait. If the connection
is in a bad state, an IOC error will be signalled. This is discussed in the next section.

Output PKTIOT will accept data packets and CLS, EOF, and UNC packets if the connection
is open. Transmitting an UNC packet when the conncction is closed puts it into the Foreign
Protocol state. RFC, LSN, OPN, FWD, and ANS packets may be transmitted if the connection
is in the appropriate state. Transmitting a bad packet type or transmitting when the connection is
in the wrong state signals an 10C error (scc the next section). Normally the user scts only the
opcode and number of bytes ficlds in the packet header; PKTIOT fills in the rest. When sending
an RFC, the user specifics the destination-host ficld and the system remembers it. When sending
an UNC, the user specifies everything but the source host and index.

Note that PKTIOT does not synchronize with 8-bit byte 1/0. If a partial packet’s worth of
bytes have been output, and then a packet is output with PKTIOT, that packet will get ahcad of
those bytes. The FORCE system call can be used to change this. If a partial packet’s worth of
bytes have been input, and then a PKTIOT is done, those bytes will remain available to the '
stream and PKTIOT will read the next packet after them.

8.1.3 Interrupts

1/0 (sccond-word) interrupts occur if enabled when an 170 opecration formerly would have
hung but now will not. In other words, an interrupt occurs on the input channel when a packet
arrives while there are no input packets available, if the packet is of a type that input PKTIOT
would return. An interrupt occurs on the output channel if the window is full and an
acknowledgement arrives which makes some space in the window. Completely interrupt-driven
170 can casily be programmed for the Chaosnct, using the WHYINT system call (see below).

An interrupt also occurs on the input channel when the connection state changes.

A %PIOC interrupt (also called an "IOC error") occurs if any of a variety of illegal
operations is performed. IOC error 3 (non-recoverable data error) is signalled if a packet is
transmitted with PKTIOT and it has an illegal size or opcode in the header. IOC crror 12 octal
(channel in illegal modc) is signalled if byte or packet input or output is done with the
connection in the wrong state, or if byte input is done and a packet other than a normal data
packet or EOF is found.

ML:L.SBDOC;AMBER 116 : . : 31-MAR-82

Chaosnet 42 System Calls

8.1.4 Miscellaneous Operations

The CLOSE system call, or the .CLOSE uuo, may be used to close the 170 channels and the
connection. When both channels ere closed, all buffers and other information associated with the
connection are immediately discarded. If the conncction is open a CLS packet is transmitted.
You can also transmit a CLS yourself, with an ecxplanatory message in it, before doing the
CLOSE.

The FORCE system call, or the .NETS uuo, can be used on an output channel. If there is
buffer containing a partial packet’s worth of 8-bit byte output, it is transmitted as a packet of lcss
than the maximum size.

The FINISH system call first docs a FORCE and then waits for all packets that have been
transmitted to be acknowledged.

The RESET system call, and the .RESET uuo, are ignored, as on most devices. The RCHST
and RFNAME system calls, and the .RCHST uuo, return the standard information for a non-file
device, with device-name CHAOS:. No device-dependent information is returned.

The WHYINT system call, given cither the input channel or the output channel of a Chaosnet

connection, returns a lot of useful device-dependent information about the connection:
vall The device code; which is the value of the symbol %WYCHA.
val2 The state of the connection. Symbols for the connection states start with the prefix %CS:

%CSCLS Closed (or never opened).

‘%CSLSN Listening for an incoming RFC,

%CSRFC RFC received while listening; ncither accepted nor rejected yet.

%CSRFS ~RIFC sent, awaiting acceptance, rejection, or answer.

%CSOPN - Open.

-%CSLOS Broken by receipt of a LOS packet.

%CSINC Broken by "incomplete transmission” (no response from forcign host for a
long time),
%CSFRN Using a foreign protocol, encapsulated in UNC packets.
val3 The left half is the number of available input packets. This does not count out-of-order
packets. This number is increased by one if therc is buffered input available for 8-bit

byte input. This number is zero if the Chaosnct connection is directly connected to a
‘STY (see- STYNET).

The right half is the number of packet slots available in the output window, ie. the
‘window size minus the number of output packets which have not yet been acknowledged
and hence are occupying space in the window.

val4 The left half is the receive window size and the right half is the transmit window size.

vaiS The left half is the input channel number and the right half is the output channel
number. These numbers are -1 if the channel has been CLOSEd or IOPUSHed.

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet o 43 Ultility Programs

The NETBLK system call works similarly on the Chaosnct as on the Arpanct. The first
argument is a channel number (input or output). The sccond argument is a conncction state code.
The third argument, which is optional, is a timeout in 30ths of a sccond. If it is not immediate
it is modified. NETBLK hangs until the connection state is different from the specified state or
the timeout (if specified) clapses. Two values arc returned: the current state of the connection
and the amount of time left.

The STYNET system call works similarly on the Chaosnet as on the Arpanct. It allows a
Chaosnet connection and a STY (pseudo terminal) to be connected together so that a
Telnet/Supdup server program can provide cfficient service. The arguments are: '

argl The STY channcl number.
arg2 The Chaosnet input channcl number to conncct it to, or -1 to disconnect it.
arg3 The Chaosnct output channel number. This is not actually used on the Chaosnet.

arg4 Up to three 8-bit characters, left-justificd, to be transmitted when an output-reset is done
on the terminal. These characters are protocol-dependent. If any unusual condition
occurs, including input of a bytc with the high-order bit on from the network, the STY
will be disconnected from the Chaosnct channel and the user will be interrupted. It is
illcgal to do 170 on any of the involved channcls without disconnecting them from each
other first.

The CHAOSQ system call allows the ATSIGN CHAOS program, described below, to peck at
the queue of pending RIFC’s, It takes one argument, which is the address of a 126-word buffer.
The first RFC packet on the queuc is copied into this buffer and moved to the end of the queuc.
If the queue is empty, the system call takes the error return.

8.2 Utility Programs

The K mode in. the :PEEK command gives onc line of information for each Chaosnet
connection in cxistence on the local machine, lists the number of packet buffers in existence and
free, and lists any queued RFC's (see the following section). Packet buffers arc dynamically
allocated in groups of 8 from system memory. Packet buffers in existence and not free may be in
- usc to contain packets being transmitted to or received from the hardware, unreceipted output
packets, or input packets not yet rcad by the uscr program.

The information about a Chaosnet connection printed by PEEK consists of:

IDX . The connection index number (not includillg the uniquization bits).

USR The user index or ITS job number of the user process which owns the connection.

UNAME

JNAME The name of the user process which owns the connection.

STATE The state of the connection. This is one of the states listed in scction 4.7, page
' 27, abbreviated to six characters. LOWLVL means the forcign-protocol state.

IBF The number of input packets buffered and available to be read by the wuser

: PIoCess.

ML:LSBDOC;AMBER 116 ‘ 31-MAR-82

Chaosnct o 44 _ Ultility Programs

PBF - The number of input packets buffered but not yet available to the user process
because they are out of order. Some carlier packets are missing; when they arrive
these packets will become available.

NOS The number of output "slots” available in the window. The user process may
send this many packets before it will have to wait for an acknowledgement.

ACK The number of received packets which should be acknowledged but which have
not yet been. This will not stay non-zero for more than a half sccond, since if it
is non-zero an STS will be transmitted.

RWIN The window size for the incoming half of this connection.
WINT The window size for the outgoing half of this connection.

FOREIGN ADDR
The host name and index number of the other end of this conncction. The =
command switches between host names and host numbers.

FLAG One or more single-letter flags indicating special things about the connection. The
. following flags cxist:

C The conncction is half-closed (one of ‘its 1/0 channels has becn closed and
the other remains open).

F The conncction is turncd "off" as far as the interrupt side of the NCP is
concerned. No packets will be received or transmitted.

——

The connection has an input buffer for strcam (non-packet) input.
The connection has an output buffer for stream (non-paéket) output.

An STS packet nceds to be sent.

- w O

The connection is connected to a STY. In other words it is an incoming
-Telnet or Supdup -connection. and the system is providing the data transfer
between the connection and the pscudo terminal.

The :CHASTA comimand is a long-winded version of the above. It prints several lines of
information about cach conncction that cxists, including the number of the next packet to be
given to the user, the number of the next packet to be output by the user, and the number of
the last packet acknowledged in each dircction.

The :CHARFC command, given a host name and a contact name in the command line, will
open a connection and print whatever comes back (refusal, simplc transaction, or any data that
emerge from a stream connection). The contact name may of course be followed by a space and
arguments. This command can be uscful in connection with the STATUS protocol, to sce if a
host is up (it will print its name followed by some garbage characters), and in conncction with
the PULSAR protocol, to turn pulsars on and off. :

The :CHATST command provides a varicty of simple Chaosnet manipulating commands. Run
it and type ? for a list of the commands. The H (bostat) command may be the most useful; it
uses the STATUS protocol to get metering information from a host and prints it nicely.

ML:LSBDOC;AMBER 116 : . : 31-MAR-82

Chaosnet - 45 Server Programs

The :HOST command, given the name of a host in the command line, looks up that host in
the system host table and prints what is known about it, including its numcric address. This
works for hosts on all networks. The :CHATAB command prints a table of all the hosts on
Chaosnet.

8.3 Server Programs

When an RFC is received for a contact name for which therc is no outstanding LSN, the
‘RFC packet is saved on a pending-RFC queuc and a new process is created and made to run the
program in the file SYS:ATSIGN CHAOS. This program uscs the CHAOSQ system call to find
out the contact name of the RFC. The contact name name is truncated to six characters if it is
longer. If a file named DSK:DEVICE;CHAOS name cxists, that file contains the desired server
program; it is loaded into the server process. When the server process is started, register 0
contains the contact name in sixbit and channel 1 is still open to the program file. The server
program must do a listen for its contact name, open the connection, log in, and so forth.

Thus a server for a new protocol can be added simply by putting a link on the DEVICE
directory. This directory is also used for Arpanct servers and for IS I/0 device scrvers.

If no file is found, a file named DSK:DEVICE;CHAOS DFAULT is loaded if it cxists. If it
does not exist cither (which is normally the case) the RFC is ignored and the scrver process kills
itsclf. After a while the system will refuse the RFC by sending back a CLS unless somcone
comes along and listens for it. ‘

8.4 Subroutine Packages

The file SYSTEM:CHSDEF > can be .INSRTcd into a Midas program to define symbols for
the format of a packet, the packet opcodes, and the states of a connection. The symbol prefixes
are %CO for opcodes, %CS for states, $CPK for packet-format byte-pointers, and %CP for
packet-format values.

The file SYSENG:NETWRK > can be .INSRT'ed into a Midas program to provide a library of
subroutines for opening conncctions, listening for requests for connection, analyzing nctwork
errors and printing useful messages to the wuser, and accessing the host-name table
(SYSBIN;HOSTS2). All system programs that use the Chaosnct do so with the aid of these
subroutines, NETWRK supports both Chaosnet and Arpanct. Documentation is provided in
comments at the beginning of the file.

ML:LSBDOC;AMBER 116 _ 31-MAR-82

Chaosnet , 46 The TOPS-20/TENEX Implementation

9. The TOPS-20/TENEX Implementation

A Chaosnct conncction is represented by a JFN obtained from the CHA: device. 'The
standard 170 operations can be performed on such a JFN, in which case the system will open a
Chaosnet strecam connecction and transfer 8-bit bytes in both directions. When a Chaosnet
connection is used in this way, it is compatible with the rest of the TOPS-20 file and 1/0 system.

Alternatively, special operations can be used to send and receive packets and do other
Chaosnet-specific operations on a Chaosnet JFN. These are described below.

For more information, see [CPR].

9.1 Opening Connections

A (potential) Chaosnet conncction is represented by a JFN. When the JFN is opened, an
actual Chaosnct connection is created. The GTJFN syntax is as follows:

The device name is CHA:. The filename is the symbolic name or octal number of the host at
the other end of the connection, or a null string if it is desired to listen for an incoming Request
For Connection rather than initiating a connecction. The extension (filetype) is normally the
contact name; some special cases are described below. Use of * names and JFN stepping is not
permitted. The dircctory, generation (version) number, and scmicolon attributes are ignored if
present.

When the JFN is opened (with OPENF), normally the system will wait for the connection to
open up; a user conncction (nonblank filename) will wait for a response to be returned to its
RFC, and a server connection (blank filename) will wait for an RFC to come in to its contact
name. If an RFC is refused or the foreign host is not up, OPENF will rcturn an crror. If data
mode 6 or 7 is used with OPENF, it will return immediately, without waiting for the conncction
to open. This is useful if you want to open several Chaosnet connections simultancously, or if
you want to determinc the reason for fajlure if the connection does not open; if the normal data
mode 0 OPENF fails, the operating system will not let you read the CLS packet nor do the
.MOERR operation (described below).

There are a number of special cases in the GTJFN syntax. If the extension is a null string,
then the contact name is specified by OPENF rather than by GTJFN; AC3 contains the number
of characters in the contact name in the left half, and the address of the contact name in the
right half. In listening mode (the filename is a null string), then if the extension is also null, this
JFN will listen to any RFC that is not otherwise serviced. Privileges are required and only one
job at a time can do this. This mechanism is used by a system server process. If the filename is
null and the cxtension is a hyphen, the JFN is put in a special mode for simple transactions;
packet-level 170 may be used to transmit any number of RFCs and rcceive any response packets
(ANS, FWD, LOS, or CLS).

When a JFEN is closed with CLOSF, if it has an open conncction the end-of-data protocol is

used (an EOF packet is transmitted and its acknowledgement is awaited), and then a CLS packet
is transmitted. (This is not completely implemented yet; currently no EOF is sent, and .MOEOF

ML:LSBDOC:AMBER 116 31-MAR-82

Chaosnet 47 Strcam Input and Output

(scc below) must be used) If the JFN is in the RIFC-Received state, the RFC is rcfused by
sending a CLS.

9.2 Stream Input and Output

The normal 170 JSYSes (BIN, BOUT, SIN, SOUT) work on Chaosnet JFNs. When the
conncction was created by listening, doing 170 to it automatically accepts it first (sending an
OPN). The input and output data arc transmitted as 8-bit bytes in standard data packets (opcode
200). On input, if an EOF packet is encountercd the standard end-of-file action occurs. If a CLS
or LOS is encountered, or the connection is in a bad state, an error is signalled. The mcssage
from the CLS or L.LOS may be picked up with .MOERR (scc below).

On TOPS-20, but not Tenex, the SIBE, SOBE, DIIBE, DOBE, SINR, and SOUTR JSYScs
may be used. The latter two treat cach packet as a separate record.

The OPENF byte size may be cither 7 or 8. With a byte size of 8, the raw Chaosnct data
bytes are transmitted. With a byte size of 7, the system converts between the ASCH code it uses
normally and the Lisp Machinc character set, which is standard on Chaosnct. (This is not yet
implemented; currently a byte size of 7 will be accepted but will behave the same as 8.)

9.3 Packet Input and Qutput

It is possible to do packet-level input and output and to deal directly with the details of the
Chaosnet protocol by using the special operations described in the following section. - Note that
stream [0 and packet 170 should not be mixed in the same connection, unless you know exactly
what you are doing, since you can get your data out of order.

9.4 Special Operations

GDSTS returns device-dependent status. AC2 returns the state of the connection, and AC3
returns the number of packet slots available in the output window in the left half, and the
number of available input packets in the right half. The symbolic names for the connection states
are as follows:

.CSCLS The connection is closed (or was never opened).

.CSLSN The connection is listening.for an RFC,

.CSRFC An REC has been received by a listening connection.

.CSRFS An RFC has been sent.

.CSOPN The connection is open.

CSLOS 'The conncction has been broken by a LOS packet.

.CSINC The connection has been brokcn by Incomplete Transmission (no response from
_ the other end for a long time).

.CSPRF This is the "permanent RFC" state which is entered by GTJFN with a nuil

filcname and an extension of just a hyphen.

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet

48 ' Special Operations

MTOPR performs a variety of special operations, with the JFN in AC1, one of the following
function codes in AC2, and an argument and/or return value in AC3.

.MOPKS

MOPKR

.MOOPN

MOSND
MOEOF
.MONOP

MOERR

 MOACN

MOSWS
.MORWS

MOAWS
MOUAC
.MOFHS

MOSIZ

MOSRT

Send a packet. AC3 contains the address of the first word of the packet. An
error return is taken if the connection is in a bad state for the kind of packet
being transmitted. ‘This will wait for space to be available in the window.

Receive a packet. AC3 contains the address of a 126-word buffer in which the
packet is to be stored. This will wait until an input packet arrives.

Accept a Request for Conncction. FError if the conncction is not in the RFC-
received state.

Force out any buffered strcam output.
Force out any buffered strcam‘output, then send an EOF packet.

Force out any buffered strcam output, then wait for it to be transmitted and
acknowledged. (This is not a "no op"”, but .MONOP is the system standard name
for this operation.) :

‘Returns the crror message from a received CLS or 1L.OS packet. An crror is

signalled if no crror message is available. AC3 is a string pointer to where to put
the crror message; it is updated to point at the terminating null character which
makes the message an ASCIZ string.

Assigns PSI (interrupt) channels. The left half of AC3 is the channel number for
output interrupts, and the right half is the channel number for input and state-
change interrupts. Specifying -1 as a channel number disables interrupts. Output
interrupts arc signalled when the window is full and then an acknowledgement is
received which makes some space so that more packets may be output. Input
interrupts are signalled when the state changes, and when there arc no input
packets available and then a packet is received.

Sets the receive window size from ACS.

Returns the receive window size in the left half of AC3 and the transmit window
size in the right half.

Returns the available space in the transmit window in ACS.
Returns the number of unacknowledged output packets in AC3.
Returns the forcign host number in AC3.

Returns the maximum packet size in bytes in AC3. This can be smaller than the
Chaosnet standard (488) on machines encumbered with an RSX20F front end.

Sets the RFC timcout period in milliseconds from AC3. The maximum is 262
seconds. ' :

ML:LSBDOC;AMBER 116 ‘ : 31-MAR-82

Chaosnet ‘ | 49 Utility Programs

9.5 Utility Programs

There are two Chaosnct utility programs, both named CHASTA. One prints onc line for cach
conncction that cxists, giving its state, number of input and output packets, who it is connccted
to, ctc. The other prints the STATUS protocol information for every host on the network,
including the host name, when it was last up, and its packet throughput and error counts. This
information is maintained by a system dacmon process.

9.6 Server Programs

When an RFC is received for contact-name, if no process is listening for contact-name and
the file SYSTEM:CHAOS.contact-name (or DSK:KSYSTEM>CHAOS.contact-name on Tenex) exists,
the server program contained in that file is run. The server program should open CHA:.contact-
name. ‘This is implemented by the CHARFC program which runs as a dacmon job and opens
CHA:., the magic name which gets a copy of all unclaimed RIFCs. Normally the server program
is run in a freshly-created job, and may log in if it wishes, but if the file is marked as cphemeral
(the ™;E" auribute), it is run in a subfork of the CHARFC job. Ephcmecral servers should be
used for protocols that don’t involve a long-term connection, '

The TELNET and SUPDUP servers attach their Chaosnet connection directly to an NVT, just
as the corresponding Arpanct servers do. '

When the system starts up, tiie file SYSTEM:HOSTS2.BIN (or DSK:KSYSTEM>HOSTS2.BIN
on Tenex) is read in and used to initialize the host name table inside the system used by GTJFN.
This is the ITS/TOPS-20/WAITS standard multi-network host table.

ML:LSBDOC; AMBER 116 _ 31-MAR-82

Chaosnet 50 The Lisp Machine Implementation

10. The Lisp Machine Implementation

Lisp Machine Chaosnct support consists of a sct of Lisp functions and data-structure
definitions in the chaos: package. There are three important data structurcs. A conn represents
a conncction. A pkt represents a packet. A stream is a standard 170 stream which transmits to
and receives from a connection. The details of these data structures are described later.

“There arc two processes which belong to the Chaosnet NCP. The recciver process looks at
packets as they arrive from the network. Control packets are processed immediately. Data packets
are put on the input packet quecuc of the conncection to which they are dirccted. The background
process wakes up periodically to do retransmission, probing, and certain “background tasks” such
as starting up a server when an RFC arrives and processing "connection interrupts” (described
below).

10.1 Opening and Closing Connections

10.1.1 User-Side

chaos:connect host contact-name &optional window-size timeout)
Opens a stream connection, and returns a conn if it succecds or a string glvmg the
reason for failure. host may be a number or the name of a known host. contact-name is
a string containing the contact name and any additional arguments to go in the RFC
packet. If window-size is not specified it defaults to 13. If timeout is not specified it
defaults to 600 (ten scconds).

chaos:simple host contact-name &optional timeout
Taking arguments similar to those of chaos:connect, this performs the user side of a
simple-transaction. The returned value is cither an ANS packet or a string containing a
failure message. The ANS packet should be disposed of (using chaos:return-pkt, see
below) when you are done with it.

chaos:remove-conn conn
Makes conn null and void. It becomes inactive, all its buffered packets are frecd, and the
corresponding Chaosnet connection (if any) goes away.

chaos:close conn &optional reason
Closes and removes the connection. If it is open, a CLS packet is sent containing the
string reason. Don’t usc this to reject RFC’s; use chaos:ireject for that.

chaos:open-foreign-connection host index &optional pkt-allocation distinguished-port
Creatcs a conn which may be used to transmit and reccive foreign protocols encapsulated
in UNC packets. host and index are the destination address for packets sent with
chaos:send-unc-pkt. pkt-allocation is the "window size", i.e. the maximum number of
input packets which may be buffered. It defaults to 10. If distinguished-port is supplied,
the local index is set to it. This is mecessary for protocols which define the meanings of
particular index numbers.

ML:L.SBDOC;AMBER 116 J1I-MAR-82

Chaosnet 51 Connection Statcs

10.1.2 Server-Side

chaos:1isten confact-name &optional window-size wait-for-rfc
Waits for an RIFC for the specified contact name to arrive, then returns a conn which
will be in the RIFC Received state. 1f window-size is not specified it defaults to 13. If
wait-for-rfe is specified as ril (it defaults to t) then the conn will be returned immediately
without waiting for an RFC to arrive.

chaos:server-alist Variable
Contains an entry for cach scrver which always exists. When an RFC arrives for onc of
these servers, the specified form is evaluated in the background process; typically it
creates a process which will then do a chaos:listen. Use the add-initialization function
to add entrics to this list.

chaos:accept conn
conn must be in the RFC Received state. An OPN packet will be transmitted and conn
will enter the Open state. If the RFC packet has not alrcady been read with chaos:get-
next-pkt, it is discarded. You should read it before accepting if it contains arguments in
addition to the contact name. '

chaos:reject conn reason
conn must be in the RFC Received state. A CLS packet containing the string reason will
be sent and conn will be removed. '

chaos:answer-string conn string
conn must be in the RFC .Received state. An ANS packet contammg the string string will
be sent and conn will be removed.

chaos:answer conn pkt
conn must be in the RFC Received State pkt is transmitted as an ANS packet and conn
is removed. Use this function when thc answer is some binary data rather than a text
string.

chaos:fast-answer-string contact-name string
If a pending RFC cxists to contact-name, an ANS containing string is sent in reqponse to
it and t is returned. Otherwise nil is returned, This function involves the minimum
possible overhcad. No conn is created. '

10.2 Connection States

chaos:state conn
Returns the current state of the connection, as one of the following symbols:

chaos:inactive -state A conn which does not correspond to any Chaosnet
connection,

chaos:open-state An open conncction,

chaos:rfc-sent-state An RFC has been transmitted and no response has yet

been received.

ML:LSBDOC;AMBER 116 ‘ 31-MAR-82

Chaosnet _ 52 Stream Input and Output

chaos:answered -state An ANS has been received.

chaos:cls-received-state - A CLS has been received.

chaos:los-received -state A 1.OS has been received.

chaos:host-down-state The connection is in the Incomplete Transmission state;

communications with the forcign host have broken down.

chaos:listening -state A LSN has been "transmitted” and the conncction is
awaiting an RFC.

chaos:ric-received-state An RFC has been reccived while listening and has not yet
been responded to.

chaos:foreign-state The - connection is being used with a foreign protocol
encapsulated in UNC. packets.

chaos:wait conn state timeout &optional whostate ,
Waits until the state of conn is not the symbol state, or until timeout 60ths of a sccond
have clapsed. If the timeout occurs, nil is returned; otherwise t is returned. whostaie is
the process state to put in the who-line; it defaults to "net wait".

10.3 Stream Input and Output

chaos:stream conn
Creates a bidirectional strcam which accesses conn, which should be open as a stream
connection, as 8-bit bytcs. In addition to the usual 1/Q operations, the following special
operations are supported:

:force-output Any buffered output is transmitted. Normally output is accumulated until
a full packet’s worth of bytes are available, so that maximum-size packets
are transmitted.

Afinish Waits until cither all packets have been sent and acknowledged, or the
connection ceases to be open. If successful, returns t; if the conncction
goes into a bad state, returns nil,

:eof Forces out any buffered output, sends an EOF packet, and does a :finish.

:clear-eof Allows you to read past an EOF packet on input. Each :tyi will return nil
or signal the specified cof error until a :clear-eof is done.

:close Send a CLS packet and remove the connection.

ML:LSBDOC;AMBER 116 - 31-MAR-32

Chaosnct 53 Packet Input and Output

10.4 Packet Input and OQutput

Input and output on a Chaosnet connection can be done at the wholc-packet level, using the
functions in this scction. A packe: is represented by a pki data structure. Allocation of pkts is
controlled by the system; cach pkt that it gives you must be given.back, There are functions to
convert between pkts and strings. A pkt is an art-16b array containing the packet header and
data; the chaos:first-data-word-in-pkt’th clement of the array is the first 16-bit data word. The
lIeader of a pkt contains a number of ficlds used by the system,

chaos:pkt-opcode pks
Accessor for the opcode ficld of pke’s header. For cach standard opcode a symbol exists
in the chaos: package, consisting of the standard 3-letter code and a suffix of "-op",
chaos:rfc-op for cxample. The valuc of the symbol is the numeric opcode.

chaos:pkt-nbytes pkrs
Accessor for the number-of-data-bytes field of pki’s header.

chaos:pkt-string pks ,
An -indircct array which is the data ficld of pk¢ as a string of 8-bit bytes. The length of
this string is cqual to (chaos:pkt-nbytes pkt).

chaos:set-pkt-string pkr &rest strings ‘
Copics the strings into the data ficld of pkt, concatcnating them, and scts (chaos:pkt-
nbytes pkt) accordingly.

chaos:got-pkt
Allocates a pkt for usc by the user.

chaos:return-pkt pkt
Deallocates a pkt.

chaos:send-pkt conn pkt &optional (opcodechaos:dat-op)
Transmits pkt on conn. pkt should have been allocated with chaos:get-pkt and then had
its data ficld and n-bytes filled in. opcode must be a data opcode (200 or more) or EOF.
An error is signalled, with condition chaos:not-open-state, if conn is not open.

chaos:send-string conn &rest strings
Sends a data packet containing the concatenation of sirings as its data.

chaos:send-unc-pkt conn pkt &optional pki-number ack-number
Transmits pkt, an UNC packet, on conn. The opcode, packet number, and acknowledge
number fields in the packet header are filled in (the latter two only if the optional
arguments arc supplied).

chaos:may-transmit conn
A predicate which returns t if there is any space in the window.

ML:LSBDOC;AMBER 116 . 31-MAR-82

Chaosnet 54 Conncction Interrupts

chaos:finish conn &optional (whostate "Net Finish")
Waits until cither all packets have been sent and acknowledged, or the conncction ceases
to be open. If successful, rcturns t; if the connection goes into a bad state, returns nil.
whostate is the process state to display in the who-line while waiting,

chaos:get-next-pkt conn &optional (no-hang-p nil)

Returns the next input packet from conn.. When you are done with the packet you must
give it back to the system with chaos:return-pkt. This can return an RFC, CLS, or
ANS packet, in addition to data, UNC, or EOF. If no-hang-p is t, nil will be rcturned
if there are no packets available or the conncction is in a bad state. Otherwise an crror
“will be signalled if the connection is in a bad state, with condition name chaos:host-
down, chaos:los-received-state, or chaos:read-on-closed-connection. If no packets
arc available and no-hang-p is nil, chaos:get-next-pkt will wait for packets to come in
or the state to change. The process state in the who-line is "NETI".

chaos:data-available conn
A predicate which returns t if there any input packets available from conn.

10.5 Connection Interrupts

chaos:interrupt-function conn
This attribute of a conn is a function to be called in the background process when certain
events occur on this connection. Normally this is nil, which means not to call any
function,” but you can use setf to store a function here. Since the function is called in
the Chaosnet background process, it should not do any operations that might have to wait
for the network, since that could permanently hang the background process.

The function’s first argument is one of the following symbols, giving the rcason for the
"interrupt”. The function’s sccond argument is conn. Additional arguments may be
present depending on the reason. The possible reasons are:

sinput . A packet has arrived for the connection when it had no input packets
queued. Tt is now possible to do chaos:get-next-pkt without having to
wait. Therc are no additional -arguments.

:output An acknowledgement has arrived for the conncction and made space in
the window when formerly it was full. Additional output packets may
now be transmitted with chaos:send-pkt without having to wait. There
are no additional arguments,

:change-of-state
The state of the connection has changed. The third argument to the
function is the symbol for the new state.

chaos read-pkts conn
Some interrupt functions will want to look at thc queued input packets of a connection

when they get a :input interrupt. chaos:read-pkts returns the first packet available for
reading. Successive paclets can be found by following chaos:pkt-link.

ML:LSBDOC;AMBER 116 ' , | ' 31-MAR-82

Chaosnet _ 5 Information and Control

chaos:pkt-1ink pkt
Lists of packets in the NCP. arc thrcadcd together by storing cach packet in the
chaos:pkt-link of its predccessor. The list is terminated with nil,

10.6 Information and Control

chaos:host-data &optional hest
host may be a number or a known host name, and defaults to the local host. Two valucs
arc returned. The first value is the host name and the sccond is the host number. If the
host is a number not in the table, it is asked its name using the STATUS protocol; if no
response is reccived the name "Unknown" is returned.

hostat &rest hosts _
Interrogates the specificd hosts, or all known hosts if none are spccificd, with the
STATUS protocol and prints the results in columns as a table.

chaos:print-conn conn &optional (shortt)
Prints everything the systcin knows about the conncction. If short is nil it also prints
everything the system knows about cach qucucd input and output packet on the
conncction,

chaos:print-pkt pks &optional (short nil)
Prints cverything the system knows about the packet, except its data field. If short is t,
only the first linc of the information is printed.

chaos:print-all-pkts pk: &optional (shortt)
Calls chaos:print-pkt on pkr and all packets on the threaded list emanating from it.

chaos:status
Prints the hardware status.

chaos:reset
Resets the hardware and softwalc and turns off the network.

chaos:assure-enabled
Turns on the network if it is not already on. It is normally always on unless you call one
of these functions.

chaos:enable
Resets the hardware and turns on the network.

- chaos:disable :
Resets the hardware and turns off the network.

ML:1.SBDOC;AMBER 116 - . : o 31-MAR-82

Chaosnct 56 "The VAX/VMS Implementation

11. The VAX/VMS Implementation

This describes the interface to Chaosnct through the routines in the "CHAOS.B32" BLISS-32
subroutine package. Definitions of standard values are in "NCPDEFS.R32". Though it is possible
to interface to the NCP at the VMS 1/0 level, it is. not recommended practice. All references to
Chaosnet in this text are with respect to the subroutine package, and not VMS QIO's.

A Chaosnet conncction is represented by a one - longword "channel number”, which has no
dircct relationship to a VMS channel number. However, for every Chaosnct channel currently
allocated, there is an associated VMS channel maintained by the subroutinc package.

All of the routines described below are declared "global”.

11.1 Opening and Closing

parse_host (host, ret-host-num)
Parses the string pointed to by host (which points to a standard VMS string descriptor),
and stores the resulting host number in the word pointed to by ret-host-num. Returns a
status code.

chaos_rfc (ret-chan, host, contact-name, wait-time)
Opens a new Chaosnet channel and sends an RFC. ret-chan is a longword to receive the
channcl number. host is a string acceptable to parse_host. contact-name is a pointer to a
string descriptor. wait-time is cither zero, which means to wait indcfinitely for a rcsponse
to the RFC, or a pointer to a quadword block acceptable to the $SETIMR system service.
A status code is rcturned, which will be SS$_TIMEOUT if the routine times out.

chaos_1sn (ret-chan, contact-name, wait-time)
Like chaos_rfc, but "sends” a LSN instead of an RFC. No host is specified.

chaos_accept (chan, window, rfc-arg, ret-rfc-arg-size)
Accepts an incoming RFC. The connection must be in RFC received state. window is the
window size. rfc-arg is an optional string descriptor which receives the argument to the
RFC. rer-rfe-arg-size is also optional, and gets the argument’s length.

chaos_ans (chan, data, wait-time)
Sends an ANS packet to the Chaosnct channel. data points to a string descriptor, wait-
time is ignored. A status code is rcturned, and if an crror occurs, the channel is
deassigned. :

chaos_close (chan, reason)

Closes the conncction, and dcassigns the channel. reason is a pointer to a string
descriptor of a string to be included in the CLS packet.

ML:LSBDOC;AMBER 116 31-MAR-82

Chaosnet 57 Stream Input and Output

chaos_assign (ret-chan)
Assigns a Chaosnet channcl, and stores it in the longword pointed to by ref~chan. 'This
routine allocates a VMS channcl. A status code is returned.

chaos_deassign (chan)
Given a Chaosnet channel previously assigned by chaos_assign, deassigns it and the
associatcd VMS channel.

11.2 Stream Input and Qutput

chaos_1in_char (chan, ret-char, timeout)
.~ Returns the next character from the channcl in the longword pointed to by ret-char.
Waits until a character is available or until timeout, whichever comes first. A status code
is returned.

chaos_out_char (chan, char)
Outputs one character. Characters are buffered until a packet fills up or until the output
is forced out by chaos_force_out. A status code is returned.

chaos_sout (chan, string)
Like repeated calls to chaos_out_char: sends string from string descriptor pointed to by
string.

chaos_force_out (chan)
If doing serial output, and a partial packet is buffered, force it to be sent.

chaos_finish (chan)
Docs a chaos_force_out, then waits for all packets to be acknowledged by the foreign
end.

chaos_eof (chan)
Sends an EOF packet after forcing out any buffered output.

11.3 Packet Input and Output

allocate_pkt (size chan, ret-pki)
Allocates a packet suitable for chaos_in_pkt and chaos_out_pkt. The packet can hold
up to size bytes of data; the number of bytes ficld in the packet’s header is filled in from
size. ret-pkt points to a longword to reccive a pointer to the packet. A status code is
returned.

deallocate_pkt (pki)
Returns a previously allocated packet to the frec pool. A packet may be rcused, since the
- 170 routines do not deallocate them, as long as the 1/0 is being done synchronously.
Returns a status code. '

ML:LSBDOC;AMBER 116 - | 31-MAR-82

Chaosnet . 58 Checking the State

chaos_out_pkt (chan, pkt, ef, astadr, astprm)
Outputs pkf to chan, waiting if there is no window room available. efn is the cvent
channel to usc for waiting. astadr and astprm are as for VMS svstem services: an AST
address and parameter, respectively, that get signalled when the packet is rcad by the
NCP. chaos_out_pkt returns as soon as there is space in the window, without waiting
for the NCP to finish transmitting the packet.

chaos_1in_pkt (chan, efn, pkt, astadr, astprin)
Reads the next input packet, whatever opcode it may be, from the conncction, waiting
indefinitely if there are no input packets. efnn is the cvent channcl to wait on, and astadr
and astprm are for an AST to be dclivered when the read completes. chaos_in_pkt does
not return until the read completes. A status code is returned.

11.4 Checking the State

chaos_xmit_room (chan, waif)
Returns SS$_NORMAL if there is room left in the transmit window. Returns an crror if
the connection went into a bad state. If wait is true, and there is no room left, then
chaos_xmit_room waits until room is available. If there is no room left and wait is false,
it returns SS$_EXQUOTA.

chaos_state (chan)
Updates the state of the Chaosnet channcl via a rcqucst to the NCP. Recturns a status
code. To check the state of the connection, first Lall this routmc then look at chan_state
- in the channel block described below.

chaos_wait (chan, old-state, timeout)
Waits until the channcl goes out of the specified state or until timeout occurs. Timeout is
cither zero -(no timeout) or a pointer to a quadword block acceptable to $SETIMR. A
status code is returned. '

chaos_wait_ti1 (chan, state, timeout)
Waits until the channel goes into the specified statc or until timeout occurs. Timcout is
either zero (no timeout) or a pointer to a quadword block acceptable to $SETIMR. A
status code is returned.

The channel number is used as an index into the global blockvector channel, defined in the
"CHAOQS.B32" file. Since BLISS-32 does not allow the field definitions to be global, they should
be copied into any program that needs to look inside the channel blockvector. The most useful
fields are ’

chan_state One of the state codes defined below.

chan_sta_txw The window size in the transmit direction.

chan_sta_rxw = The window size in the receive direction.

chan_sta_txwa The number of packet slots available in the transmit window.

chan_sta_rxavv The number of input packets available.

ML:LSBDOC;AMBER 116 : . ' : ~ 3I-MAR-82

Chaosnet

59 Chccking the State

The states are as follows:

conn_st_closed (0)
conn_st_rfcrev (1)

_ conn_st_rfcsnt (2)
conn_st_open (3)
conn_st_los (4)
conn_st_incom (5)
conn_st_new (6)
conn_st_lsn (7)
conn_st_full (%0'400’)

ML:L.SBDOC;AMBER 116

Connection closed by a CLS packet.
RFC received by listening conncction.
RFC sent, no response yet.
Connection open.

Conncction broken by a LLOS packet.

Incomplete transmission (no response from foreign host).

Connection ncwly allocated.

Listening for an incoming RFC.

This bit is set when the transmit window is full,

remainder of the state will be conn_st_open.

Usually, the

31-MAR-82

Chaosnet 60 , The Unix Implementation

~12. The Unix Implementation

.

Chaosnet support on UNIX is implemented as a device driver in the operating system and a
set of uscr and scrver programs. ‘The code will run on pdpll systems running Version 7 UNIX
and on VAX systems running the current Berkeley UNIX. 'The pdpll version probably requires a
processor with separate instruction and data spaces (pdpll/44, /45, or /70); it has not been tried
on other processors.

'The NCP is implemented entircly in the kernel as a device driver, and is thus accessed from
uscr programs using the normal input/output system calls. Packets received from the network are
processed at interrupt level (this may be rhanged to AST’s in the necar futurc) All other
processing is done in system calls issucd by user processes.

12.1 Header Files

All header files relevant to the Chaosnect software are kept in the chaos subdirectory of the
global header filc directory. They are:

{chaos/user.h>
Normally the only hcader file useful for user programs using the network. This
file contains ioctl command definitions, associated data structurcs and constants,
and pathnames of special files needed to access the nctwork.

<chaos/contacts.h>
The contact names to access network services (names to put in RFC packets).

<chaos/dev.h>
The bit fields, constants, and macros used to encode and decode the minor device
numbers for the Chaosnet special files.

_<chaos/whoami.h>
The definition of the particular host this software is being compiled for. (Useful
only for the kernel—soon to be obsolete).

{chaos/chaos.h> ‘
All definitions of data structures used in the kernel. Rarely used by any user
program.

12.2 Special Files for Creating Connections

There are several special files in the file system that provide ways of creating and accessing
connections (these names are defincd in <chaos/user.h>):

CHRFCDEV Opening this file crcates a conncction to a remote host. The host address should
follow the file name as an additional pathname component containing ascii digits
representing the Chaosnet address in decimal (soon to be octal). The rest of the
pathname after the host address is taken as the contact name that will be sent in
the RFC packet. Thus to open a TELNET conncction to the host at address 234
usc: :

ML:LSBDOC; AMBER 116 . 31-MAR-82

Chaosnet . ‘ 61 Stream Mode Connections

#include <chaos/user.h>
#include <chaos/contacts.h>
char pathbuf[100];
int fd;
sprintf(pathbuf, ‘
. "%s/%d/%s", CHRFCDEV, 234, CHAOS_TELNET);
fd = open(pathbuf, 2);
To send a message to User at host address 567 use:
sprintf(pathbuf,
"%s/%d/%s %s", CHRFCDEV, 567, CHAOS_SEND, User);
fd = open(pathbuf, 1); '

Opening CHRFCDEV returns when the response to the RFC is reccived from the
remote host, or a fixed timcout, whichever happens first. Other timcouts may be
implemented by the user program, using the alarm system call. ANS packets are
acceptable responses. The data in the ANS packet will be readable, and will be
followed by end-of-file as with a full connection or a normal file.

CHRFCADEV This device provides the same functions as CHRFCDEV except that it returns
immediately after transmission of ther RFC packet with the conncction in the
CSRFCSENT state. This allows the user program to have access to the contents
of packets rcfusing the connection (CLS, 1.OS). Sece the CHIOCSWAIT and
CHIOCPREAD ioctl’s below.

CHLISTDEV Opening this file creates a connection in the Listening statc with the contact name
given as the pathname component following the device name. Thus to listen for a
TELNET connection use: :
sprintf(pathbuf, "%s/%s", CHLISTDEV, CHAOS_TELNET);
fd = open(pathbuf, 2);
‘Use the CHIOCSWAIT ioctl to wait for a RFC to arrive, and CHIOCREJECT,
CHIOCACCEPT, or CHIOCANSWER to respond.

CHURFCDEV This file, the "unmatched RFC server" device, when opencd and read will return
the contents of RFC packets that have no listcner. Read calls on this connection
just return RFC data. If another rcad on this file is done before the RFC is
matched, it is discarded. This file may only be opened by onc user at a time.
Normally this file is opened by the system unmatched-RFC server process.

12.3 Stream Mode Connections

The default mode when a Chaosnet device is opened is stream mode. This mode makes the
connection behave like a UNIX file, with the exception that seek system calls are disallowed and
read calls will return whatever data is available if there is any. (Rather than returning the full
number of bytes requested.) Thus standard 1/0Q library routines can ecasily be used to rcad and
write on these connections. A normal UNIX end of file indication will be returned on recciving
an EOF packet, and will continue to be returned until cither the connection is closed or more
data arrives on the connection. If the connection is closed before an EOF packet is received (via
a CLS or LOS packet arriving or a conncction timeout occurring), an error will be rcturned after
all data and EOF packets have been read.

" ML:LSBDOC;AMBER 116 . . . 31-MAR-82

Chaosnct 62 Record Mode Connections

If the file was opened for writing (open mode 1 or 2), then an EOF packet will be sent and
its acknowledgement awaited when the file is closed (unless the connection was already closed).

In strcam mode all non-data packets are discarded and data packet opcodes are all treated the
same. loctl’s can be used to read non-data packets (RFC, CLS, LOS etc.) and perform other
network specific functions. ‘

The contents of ANS and UNC packets are rcad as data in the stream, just as if they had
beéen data packets. ‘

12.4 Record Mode Connections

This mode, sct on a connection by issuing
' ioct1(fd, CHIOCSMODE, CHRECORD);
gives the user program access to packet opcodes and packet boundarics, without any further
awarcness of network data structures. Read calls from the connection return all the data in a
single packet, with the first byte of the data being the opcode in the packet. The count returned
is, as normal, the count of bytes transfered, including the opcode. Opcodes are defined in
{chaos/user.h>,

REC, ANS, CLS, LOS, EOF, UNC, FWD, and data packets will be returncd to the user. '
The buffer given must be large enough to fit the entire packet including the opcode byte, or an
error is returned.

Write calls must include the desired opcode as the first byte of data and also reflect this byte
in the byte count. The data to be written must not exceed the maximum packet size.

If a record mode connection is closed in the OPEN state a CLS packet will automatically be
sent. The CHIOCREJECT ioctl should be used to send a CLS packet containing a specific
reason. ' ' ‘

125 TTY Mode Connections

TTY mode (via CHTTY) connections allow the connection to act cxactly as a UNIX tty,
allowing, for cxample, remote login service with no extra process for the NVT. Unfortunately,
none of the remote protocols (TELNET, SUPDUP) can work over a transparcnt connection that
just acts like a terminal. This mode is currently unuscd.

ML:LSBDOC;AMBER 116 » ‘ 31-MAR-82

Chaosnct

12.6 Toreign Protocol Mode

63 IForcign Protocol Mode

Used for a connection to transmit and receive foreign protocols encapsulated in UNC packets.

(unimplemented)

12.7 IOCTL System Call Commands

The following ioctl codes can be used on Chaosnet connections.

CHIOCSMODE

CHIQOCSWAIT

CHIOCFLUSH

CHIOCOWAIT

Set the conncction mode. Argument is CHSTREAM,
CHRECORD, CHTTY, or CHFOREIGN.

Wait until the connection statc changes from the given state
(in the third argument). Typically used for listeners waiting
for a RFC:

ioct1(fd, CHIOCSWAIT, CSLISTEN);
or for a user end waiting for a respone to a RFC:

joct1(fd, CHIOCSWAIT, CSRFCSENT);

In stream mode, send out any data waiting for a full packet.
This is done every 172 sccond at clock level anyway.

Wait for all transmitted data (after doing a CHIOCFILUSH) to
be acknowledged by the other end of . the conncction. If the
argument is non-zero, an EOF packet is sent first, and then it

. must be acknowledged also.

CHIOCGSTAT

Get the status of the conncction. The argument is the address
where the status structure (struct chst in <{chaos/user.h>)
will be returned. This is frequently usced to ascertain the state
of the connection after a CHIOCSWAIT call, or to find out
the Chaosnct address of the other end.

CHIOCANSWER

When a connection is in the CSRFCRCVD state, this causes
data writes on the conncction to be sent using an ANS packet.
In stream mode, the packet is filled incrementally. In record
mode the first packet sent is made into an ANS. In cvery
case only onc packet is sent and the connection is made
closed. ' '

CHIOCACCEPT.

CHIOCREJECT

ML:1.SBDOC;AMBER 116

When a connection is in the CSRFCRCVD state, this causes
an OPEN packet to be sent and the connection opened.

When the connection is in eéither the CSRFCRCVD or
CSOPEN state this causcs a CLS packet to be sent, closing
the conncction. The argumepnt is the address of a null-
terminated string which is copied into the close packet.

31-MAR-82

Chaosnet . 64 ‘ Signals

'CHIOCPREAD Read a packet from the -reccived packet queue. Used in
stream mode to read control packets that are otherwise
ignored. Typically used to read RIFC or CLS packets.

CHIOCRSKIP Skip over the unmatched RFFC at the head of the unmatched
RIFC queue and mark it to only be matched against a listen,
- not queucd as an unmatched RFC. This is used by the
unmatched REFC server to ignore RFC’s it knows somcone clse
might want.

FIONREAD A normal UNIX ioctl, this returns an integer at the address
specified by the argument, containing the number of byes
available to be read.

12.8 Signals

All recad, write, open, close, and ioctl's are interruptable cxcept when waiting for buffer
allocation. Read and write calls arc automatically restarted (on VAX UNIX). All others currently
rcturn EINTR errors.,

12.9 Software Installation

Global header files arc placed in a "chaos" subdirectory of the system header file directory
(usually Zusr/include) so that # include <chaos/foo.h> works.

The kernel code is found in two subdirectories of the kernel source directory, parallel to sys,
dev, and conf:

chncp This dircctory contains the parts of the NCP which do not depend on the
operating system. It also contains the actual Chaosnet interface drivers - which do
have Some operating-system-dependent code. These drivers interface only to the
Chaosnet code (except interrupt vectors) and thus arc not usable as UNIX device
drivers (this may change).

chunix This dircctory contains the top level device driver interface from the system call
level (through cdevsw) to the NCP and some system dependent utilitics (buffer
allocation ctc.) '

The NCP neceds two entries in the character device switch and one other small change in
conf.c.
In the UNIX kernel proper several small changes are required:

nami.c A small (2 line) change is required to nami to allow Chaosnet special files to have
additional pathname components after the one that matches the special file in the
file system.

clock.c A call to the Chaosnet clock process routine must be placed in the clock routine
: called cvery clock tick (this should be done with timeouss but isn’t).

ML:LSBDOC; AMBLER 116 ‘ . : J1-MAR-82

Chaosnet 65 Software Installation

fio.c Scveral bugs in clcsef which never were encountered by other drivers need fixing.

All these changes arc conditioned on #ifdef CHAOS. In- the aormal (Berkeley) VAX
configuration scheme, normal entrics made in the configuration file suffice to cause all the right
files to be included in the system if the line '

pseudo-device chaos '
is specified and the CHAOS option is included in the "options” line. Tac "files" file gets a few
more lines. :

For pdpll UNIX, sincc the configuration system is much more primitive, some handwork is
usually required to make the kernel correctly.

All uscr program sources can be put in /usr/src/cmd/chaos, /usr/local/src/cmd/chaos,
/usr/src/local/cmd/chaos. The make file contains variables for destinations of all programs.
The default destination for wuser programs is /usr/local. Scrver programs arc placed in
/usr/local/lib/chaos. 'The unmatched RFC server ("chserver") is placed in /etc and should be
started in the Zetc/rc file at boot time. It may be killed and restarted at any time.

ML:LSBDOC;AMBLER 116 | 31-MAR-82

Chaosnet 60 ~ References

References

- The following documents arc of some related intercst. AIM is an AI Memo of the MIT
Artificial Intelligence Laboratory. RFC is a Request for Comments of the Arpanct Network
Working Group. IEN is an Internet Experiment Note of the Arpanct Network Working Group.

[AIM444] A. Bawden, R. Greenblatt, et al, Lisp Machine Progress Report, AIM-444.
[CHINUAL] D. Wcinreb, D. Moon, Lisp Machine Manual, MIT Al Lab.
[CPR] C. Ryland, TOPS-20 Chaosnet Manual, unpublished.

[ETHERNET] R. Metcalfe, D. Boggs, FEthernet: Distributed Packet Switching for Local
Computer Networks, CACM Vol. 19, No. 7, July 1976, p. 395.

[FILE] Documented online on the file ALLMDOC;CHFILE >.
[FINGER] K. Harrensticn, Name/Finger, RFC-742.

[RFC733] D. Crocker ct al., Standard for the Format of Arpa Network Text Messages, RFC-
733, ‘

[SUPDUP] M. Crispin, Supdup Protocol, RFC-747, RFC-734.
[TCP] DOD Standard Transmission Control Protocol, IEN-129.
[TELNET] Telnet Protocol Spécification, RFC-542.

[TIME] K. Harrensticn, Time Server, RIFC-738.

[UDP] J. Postel, User Datagram Protocol, IEN-88.

[UNIBUS] PDP11 Peripherals Handbook, Digital Equipment Corporation.

ML:LSBDOC; AMBER. 116 ' o 31-MAR-82

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

